238 U(d,t) 1970Bo31,1972Er03 | | | History | | | |-----------------|---------------|----------------------|------------------------|--| | Туре | Author | Citation | Literature Cutoff Date | | | Full Evaluation | M. S. Basunia | NDS 107, 3323 (2006) | 15-Mar-2006 | | 1970Bo31: Target: ²³⁸U; Projectile: d, E=17 MeV. 1972Er03: Target: depleted ²³⁸U; Projectile: d, E=9, 12 MeV. Q(d,t)=116 6 (1967Er02) The fission probability at higher excitation energies following ²³⁸U(d,t) reaction was determined in 1992Si06 by using 24.85-MeV d beam and measuring the energy spectrum of tritons in coincidence with the fission fragments, in addition to the single spectrum. ## ²³⁷U Levels $E(\alpha,\beta,E)$ 1/2[631] band. | E(level) [†] | ${\sf J}^{\pi \#}$ | L @ | s& | Comments | |---|--------------------|------------|---------------------|---| | 0 | 1/2+ | | 0.06 | $(d\sigma/d\Omega)(\exp)/((2J+1) d\sigma/d\Omega(DWBA))=0.063 5 (1972Er03).$ | | 11 [‡] 4 | 3/2+ | | 0.34 | $(d\sigma/d\Omega)(\exp)/((2J+1) d\sigma/d\Omega(DWBA))=0.159 12 (1972Er03).$ | | 54 [‡] 4 | 5/2+ | | 0.02 | $(d\sigma/d\Omega)(\exp)/((2J+1) d\sigma/d\Omega(DWBA))=0.0018 4 (1972Er03).$ | | 81 [‡] 4 | 7/2+ | 4 | 0.12 | $(d\sigma/d\Omega)(\exp)/((2J+1) d\sigma/d\Omega(DWBA))=0.067 14 (1972Er03).$ | | 161 ^{‡c} 3 | 5/2+ | | 0.09 | () () () () () () () () () () | | 161 [‡] <i>a</i> 3 | 9/2+ | | 0.32 b | $(d\sigma/d\Omega(exp))/((2J+1)\ d\sigma/d\Omega(DWBA))=0.048\ 16\ (1972Er03);$ contribution from other doublet member was removed. Cross sections for the $5/2^+,\ 5/2[622]$ state was estimated from its yield in $^{236}U(d,t)^{235}U$ reaction. | | 204 ^{‡c} 3 | 7/2+ | | | | | 204 [‡] <i>a</i> 3 | 11/2+ | | 0.49 ^d | $(d\sigma/d\Omega(exp))/((2J+1)\ d\sigma/d\Omega(DWBA))=0.065\ 18\ (1972Er03);$ contribution from other doublet member was removed. Cross sections for the $7/2^+,\ 5/2[622]$ state was estimated from its yield in $^{236}U(d,t)^{235}U$ reaction. | | 261 ^{‡c} 3 | 9/2+ | 4 | 0.68 | $(d\sigma/d\Omega(exp))/((2J+1) d\sigma/d\Omega(DWBA))=0.071 4 (1972Er03).$ | | 368 ^e 4 | 11/2- | | 0.42 | | | 484 <i>3</i>
509 ^e <i>3</i> | 15/2- | 7 | 2.64 | | | 530 <i>4</i>
545 <i>4</i>
575 <i>3</i> | 13/2 | 1 | 2.04 | | | 668^{f} 4 | 3/2+ | | 0.03 <mark>8</mark> | | | 699 <i>f</i> 3 | 5/2 ⁺ | | 0.26 | | | 807^{f} 3 | 9/2+ | | 0.48 | | | 867 [‡] <i>h</i> 3 | 1/2- | 0,1 | 0.78 | $(d\sigma/d\Omega(\exp))/((2J+1) d\sigma/d\Omega(DWBA))=0.38 3 (1972Er03).$ | | 910 ^h 3 | 3/2- & 5/2- | 0,1 | 0.29 | (av/a=(e.p/)/((=v+1) av/a=(2 + 2.1/) visc v (12+22/00). | | 950 ⁱ 3 | 9/2+ | 4 | 0.72 | | | 984 <i>4</i> | - / | | | | | 1013 ^j 4
1112 3
1155 3
1189 3
1208 4
1247 3
1375 3
1583 3
1612 3
1717 4
1741 4 | (7/2- & 9/2-) | | 0.18 ^k | | ## ²³⁸U(d,t) **1970Bo31,1972Er03** (continued) ## ²³⁷U Levels (continued) - [†] From 1970Bo31, except otherwise noted. - ‡ Reported both in 1970Bo31 and 1972Er03, average value. - [#] Spin and Nilsson-state assignments were made in 1970Bo31 and 1972Er03 from comparison of experimental spectroscopic factors with the calculated values, and from L values. - [@] Deduced in 1970Bo31 from $d\sigma(^3\text{He},\alpha)/d\sigma(d,t)$. - $^{\&}$ S=(d σ /d Ω)(exp)/N(d σ /d Ω)(DWBA), from 1970Bo31. The normalization factor N was taken as 3.33. See also 1975Ga23 for calculated cross sections. - ^a Level assumed doublet. - ^b Estimated in 1970Bo31 by dividing the total intensity in the same ratio as the theoretical differential cross sections (1970Bo31). - ^c 5/2[622] band. - d S for the 7/2+,5/2[622] state was assumed zero (1970Bo31). - ^e 7/2[743] band. - ^f 3/2[631] band. - ^g Found to be an order of magnitude too large for 3/2⁺,3/2[631] state (1970Bo31). - $h \ 1/2[501]$ band. - $i \frac{5}{2}[633]$ band. - j May belong to 1/2[501] band. - ^k This value is more than twice the calculated value (1970Bo31).