Adopted Levels, Gammas

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. S. Basunia	NDS 107,2323 (2006)	15-Mar-2006

 $Q(\beta^{-})=-1.48\times10^{3}$ syst; $S(n)=5880.7\ 21$; $S(p)=5.57\times10^{3}\ 5$; $Q(\alpha)=5748.3\ 23$ 2012Wa38 Note: Current evaluation has used the following Q record -1480 syst 5880.7 21 5570 50 5748.4 23 2003Au03. $\Delta Q(\beta^{-})=60(syst)\ 2003Au03.$

Calculation of energies and wavefunctions for nonrotational states was reported in 1971Ko31 and 1982Li02.

²³⁷Pu Levels

The configurations given below are the dominant components.

Cross Reference (XREF) Flags

			A B C	${}^{241}Cm \alpha \text{ decay } \mathbf{D} \qquad {}^{239}Pu(\mathbf{p},t)$ ${}^{237}Am \varepsilon \text{ decay } \mathbf{E} \qquad {}^{237}Pu \text{ IT decay } (0.18 \text{ s})$ ${}^{238}Pu(\mathbf{d},t)$					
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments					
0.0@	7/2-	45.64 d <i>4</i>	ABC E	%α=0.0042 4; %ε=99.9958 4 α branching was calculated from γ intensities measured in α and ε decays of ²³⁷ Pu (1979El05) (see ²³⁷ Pu α decay). %α=0.0033 3 was calculated from α activities of ²³⁷ Pu, ²³⁶ Pu in a source with known fractions, and K x-ray counting (1957Th10). Other: a%=0.0020 4 in 1957Ho68. J ^π : 145.544γ from 1/2 ⁺ level is E3. ε decay to ²³⁷ Np, α decay of ²⁴¹ Cm, and (d,t) data are consistent with the assignment. T _{1/2} : Weighted average of 44.66 d 4 (1994Ta25), 45.63 d 20					
47 71 @ 4	0/2-		ADC	(19571h10,1957Ho68), 45.3 d 2 $(19778m02)$, and 45.12 d 3 $(1981Ba15)$.					
4/./1 - 4	9/2 11/2-		ABC	$J^*: 4/./1\gamma$ M1+E2 to $1/2$ state; (d,t) data.					
100 J	$\frac{11/2}{1/2^+}$	0.18 s 2	ARCDE	$J^{(1)}(u,t)$ data; in to band. \mathcal{O}_{LT} = 100					
1+3.3+3 0	1/2	0.10 3 2	ADCDL	J^{π} : L=0 in ²³⁹ Pu(p,t) reaction; (d,t) data. T _{1/2} : From $\alpha \gamma(t)$ in ²⁴¹ Cm α decay.					
155.456 ^{&} 12	3/2+		ABC	J^{π} : 9.903 γ M1+E2 to 1/2 ⁺ state; α hindrance factor; (d,t) data.					
175 [@] 7	$13/2^{-}$		A C	J^{π} : (d,t) and ²⁴¹ Cm α decay data; fit to the rotational band.					
201.179 ^{&} 12	5/2+		ABCD	J^{π} : 45.724 γ to 3/2 ⁺ is M1+E2, 55.638 γ to 1/2 ⁺ state is (E2); (d,t), (p,t) and ²⁴¹ Cm α decay data.					
224.25 ^{&} 5	7/2+		ABCD	J ^{π} : 68.8 γ (E2) to 7/2 ⁺ state; (d,t) and ²⁴¹ Cm α decay data; fit to the rotational band.					
257 [@] 280.222 ^a 14	15/2 ⁻ 5/2 ⁺		C BC	J ^{π} : (d,t) data; fit to the rotational band. J ^{π} : 280.22 γ E1 to 7/2 ⁻ state; 124.72 γ to 3/2 ⁺ state is not E2.					
304 ^{&} 4	9/2+		A CD	J^{π} : (d,t) reaction; fit to the rotational band.					
320.970 ^a 16	7/2+		В	J^{π} : 40.748 γ M1+E2 to 5/2 ⁺ state, 321.0 γ E1 to 7/2 ⁻ , 273.3 γ to 9/2 ⁻ state.					
370.40 ^b 4	3/2+		AB	J ^{π} : 224.86 γ (M1) to 1/2 ⁺ state, it is not pure E2 or pure E1; therefore, J ^{π} Ne 5/2, 1/2 ⁻ , 3/2 ⁻ ; and J ^{π} Ne 1/2 ⁺ from log <i>ft</i> =7.33 for ε branch in 5/2 ⁽⁻⁾ ²³⁷ Am ε decay					
371 ^{<i>a</i>} 5	9/2+		С	J^{π} : (d,t) data; fit to the rotational band.					
404.19 ^b 5	5/2+		ABC	J^{π} : M1+E2 γ transitions to $3/2^+$, $5/2^+$, $7/2^+$ states. Low α hindrance factor is probably due to Coriolis interaction of the $3/2[631]$ band with the $5/2[633]$ and $1/2[631]$ bands.					

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

²³⁷Pu Levels (continued)

E(level) [†]	J ^{π‡}	XREF	Comments
407.82 [°] 6	5/2+	BCD	J^{π} : 183.7 γ and 252.2 γ to 7/2 ⁺ and 3/2 ⁺ states, respectively, are M1(+E2).
438.41 [°] 7	7/2+	BC	J ^{π} : 438.4 γ E1 and 390.7 γ E1 to 7/2 ⁻ and 9/2 ⁻ states, respectively , log <i>ft</i> =6.57 for ε branch from 5/2 ⁽⁻⁾ ²³⁷ Am ε decay rules out 9/2 ⁺ .
453.29 ^b 14	7/2+	BC	J ^{π} : 455.8 γ M1 from 7/2 ⁺ state; log <i>ft</i> =7.53 for ε branch in 5/2 ⁽⁻⁾ ²³⁷ Am ε decay; fit to the rotational band.
473.52 ^d 7	7/2+	BC	J ^{π} : 473.5, 425.8 γ 's to 7/2 ⁻ , 9/2 ⁻ states are E1; log <i>ft</i> =6.7 for ε branch in ²³⁷ Am ε decay.
486 ^C	$(9/2^+)$	С	J^{π} : (d,t) data.
513 ^b	$9/2^{+}$	С	J^{π} : (d,t) data; fit to the rotational band.
545 ^e	$(1/2^{-})^{\#}$	С	J^{π} : 1/2[501] band assignment.
582 ^e	$(5/2^{-})^{\#}$	С	Spin assignment is tentative.
591 ^e	$(3/2^{-})^{\#}$	С	J^{π} : Band member.
655		с	This level, observed in (d,t) reaction, may be identical to the 655.3-keV, $5/2^-$, K=5/2 level observed in ²³⁷ Am ε decay. See the comment on Nilsson assignment for the band based on 655.3-keV level.
655.39 ^{<i>f</i>} 15	(5/2)-	Вс	J^{π} : 655.3 γ to 7/2 ⁻ g.s. is M1; populated in ²³⁷ Am ε decay. Energy difference from the 7/2 ⁻ state at 696.2 keV (which yields A=5.8) suggests that these levels are members of a K=5/2 band.
691 ^e	$(7/2^{-})^{\#}$	С	J^{π} : Band member. Spin assignment is tentative.
696.14 ^{<i>f</i>} 15	7/2-	В	J ^{π} : 696.2, 648.5 gammas to 7/2 ⁻ , 9/2 ⁻ states are M1; log <i>ft</i> ≤7.5 for ε branch from 5/2 ⁽⁻⁾ ²³⁷ Am ε decay.
716		С	
741		C	
131 775		C C	
800 ^g 2	$1/2^{+}$	D	J^{π} : L=0 in (p,t).
809	,	С	
840		С	220
851 5	3/2+,5/2+	D	J^{π} : L=2 in ²³⁹ Pu(p,t) reaction. This level may be the 5/2 ⁺ member of K=1/2 band at 800 keV.
852		C	$5/2^{-}$, $5/2[503]$ state assignment was tentatively proposed in (d,t) dataset (1973Gr26).
884 908.90 <i>12</i>	7/2+	В	J ^{π} : 501.2 and 435.2 gammas to 5/2 ⁺ and 7/2 ⁺ states are M1, 861.2 γ to 9/2 ⁻ level. The 7/2[613] state assignment was proposed from ²³⁷ Am ε decay (1975Ab05).
933		С	.,_[,,,,],,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
964		С	
998 5		cD	
1000.6 3	3/2+,5/2,7/2	Bc	J^{π} : log ft of 7.13 for the ε branch from $5/2^{(-)}$ ^{2.57} Am and 1000.6 γ to $7/2^{-}$ state suggest $J^{\pi}=3/2^{+}$, $5/2\pm$, or $7/2\pm$.
1014		C D	3/2, $3/2[501]$ state assignment was tentatively proposed in 19/3Gr26 from (d,t) data.
1023 3		Ċ	
1104		c	
1189		С	
1216		С	
1250		C	
1204		c	
1383		c	
1397		С	
1463		C	
1481		C	
1334		C	

Continued on next page (footnotes at end of table)

²³⁷₉₄Pu₁₄₃-3

Adopted Levels, Gammas (continued)

²³⁷Pu Levels (continued)

E(level) [†]	T _{1/2}	XREF	Comments
26.0×10 ² 20	97 ns 4		 %SF>0 SF decay observed. Other decay mode not reported. E(level): From 1978De07 (fit to excitation function)- ΔE=200 by the evaluator. 2900 200 in 1971Br39 (fit to excitation function), 3400 200 from threshold energies (1970Bu02), 3100 150 from fit to excitation function (1973Va16), 2300 200 recommended in 1973Br38 from lowest threshold. T_{1/2}: Weighted average of 77 ns 16 (1979Gu03), 120 ns 30 (1969VaZX), 60 ns 20 (1969Me11,1971Re11), 120 ns 50 (1970Bu02), 88 ns 35 (1971Ru03), 114 ns 12 (1971Te07), 100 ns 50 and 120 ns 50 (1971Br39), 130 ns 20 (1972Vi10), 110 ns 9 (1974Ba82), 110 ns 30 (1969La14), 85 ns 7 (1982Ra04). Other: 60 ns (1970Po01; reevaluated measurement of 1969La14), 70 ns (1972Ga42). For calculated level energy and T_{1/2}(level), see 1972We09, 1990Bh02. For calculations and evaluations of fission-barrier parameters see, for example, 1972We09, 1976Ga11, 1978Fl05, 1980Bj02, 1981Re06, 1984Ku05. g=-0.45 3 by perturbed angular distribution of fission fragments (1982Ra04, 1983Ra36). J^π: for suggested spins and discussions, see 1971Ru03, 1972Vi10, 1973Va16, 1975Ha09, 1975Kh06, 1970Cen03, 1980Bi02, 1980Bi02
29.0×10 ² 25	1.1 μs I		 19/9Gu03, 1980Bj02, 1980L115, 1982Ra04, 1984Du03. %SF>0 Only SF decay has been observed, it is not established whether the level decays by γ to the 85-ns SF isomer or by SF only, or both. E(level): from fit to excitation functions, 1973Va16 deduced that 1.1-μs isomer is 300±150 keV above the 82-ns (97-ns in current evaluation) isomer. T_{1/2}: Weighted average of 900 ns <i>150</i> (1970Po01), 1120 ns <i>80</i> (1971Ru03), 950 ns <i>300</i> (1971Te07), 1000 ns <i>200</i> (1972Vi10), 1310 ns <i>260</i> (1974Ba82), 1050 ns <i>400</i> (1979Gu03). Assignment: ²³⁷Np(d,2n) exit (1970Po01). g=+0.14 2 by time-dependent, perturbed angular distribution of fission fragments (1974Ka06). For suggested spins see 1979Gu03, 1984Du03, for example.
[†] From a lea [‡] Assignmer L transfer [#] From (d.t)	ast squares f nts are based values. data.	it to the ad 1 on the m	lopted γ -ray energies. leasured absolute cross sections in (d,t) data, expected pattern of the rotational bands, and deduced
[@] Band(A):	7/2[743] bar	nd.	
^{α} Band(B): 1 ^{a} Band(C): f	1/2[631] bar 5/2[622] bar	nd. nd.	
^b Band(D): 3	3/2[631] bar	nd.	
^c Band(E): 5	5/2[633] ban	ıd.	

- ^{*d*} Band(E): 7/2[624] band.
- Dand(1): 1/2[024] band.
- ^e Band(G): 1/2[501] band.
- ^{*f*} Band(H): K=5/2 band. 5/2[752] Nilsson assignment was proposed by analogy to 633-keV level in ²³⁵U (1975Ah05). Large log *ft* values (7.1 and 7.5) for the allowed feedings from ²³⁷Am decay to $5/2^-$ and $7/2^-$ levels are consistent with the fact that 5/2[752] is a hole state. ε transitions from 5/2[523] state could be hindered by a factor of 10 because of N-forbiddenness. However, if the level seen in (d,t) at 655 keV is the state seen at 655.3 keV in ²³⁷Am decay, the observed (d,t) cross section is not consistent with $5/2^-$, 5/2[752] assignment. A possible assignment could be $5/2^-$, 5/2[503] state. This assignment was tentatively proposed for a level observed at 852 keV in (d,t) (1973Gr26).
- ^g Band(I): $K=1/2: 0^+$ phonon coupled to 1/2[631] state. If 851-keV level is 5/2⁺ member of this band, and if decoupling parameter a=-0.47, same as that of 1/2[631] band, then band parameter A=5.2. 3/2⁺ member would be expected at about 808 keV.

						Adopted Lev	els, Gamm	as (continued)	
							γ (²³⁷ Pu)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	δ #	α@	Comments
47.71 145.543	9/2 ⁻ 1/2 ⁺	47.71 <i>4</i> 145.542 8	100 100	0.0 0.0	7/2 ⁻ 7/2 ⁻	M1+E2 E3	0.24 8	79 <i>15</i> 51.6	B(E3)↓=0.028 <i>4</i> B(E3)(W.u.)=0.028 <i>4</i> E _γ : weighted average of 145.536 <i>9</i> (²⁴¹ Cm α decay) and 145.552 <i>12</i> (²³⁷ Am ε decay). The unweighted average is 145.544 <i>8</i> .
155.456 201.179	3/2+ 5/2+	9.903 <i>16</i> 45.724 8 55.638 <i>11</i>	100 46 <i>12</i> 100 <i>16</i>	145.543 155.456 145.543	1/2 ⁺ 3/2 ⁺ 1/2 ⁺	M1+E2 M1+E2 (E2)	0.07 2 0.47 <i>13</i>	3.2×10 ³ 10 170 60 261	
224.25 280.222	7/2 ⁺ 5/2 ⁺	68.8 <i>1</i> 79.05 <i>2</i> 124.72 <i>3</i> 280.23 <i>2</i>	100 0.42 7 0.59 11 100 5	155.456 201.179 155.456 0.0	3/2 ⁺ 5/2 ⁺ 3/2 ⁺ 7/2 ⁻	(E2) (M1) (M1) E1		94.2 12.0 15.1 0.0484	
320.970	7/2+	40.748 ^{&} 6 273.3 <i>1</i>	2.0 ^{&} 4 54 4	280.222 47.71	5/2 ⁺ 9/2 ⁻	M1+E2	0.19 3	123 14	
370.40	3/2+	321.0 <i>1</i> 214.9 2 224.86 <i>4</i>	100 8 100 21 100 21	0.0 155.456 145.543	$7/2^{-}$ $3/2^{+}$ $1/2^{+}$	E1 (M1) (M1)		0.036 3.23 2.85	
404.19	5/2+	123.8 <i>3</i> 179.94 <i>2</i> 203.03 <i>5</i> 248.7 <i>2</i>	≈7 41 9 71 9 100 <i>10</i>	280.222 224.25 201.179 155.456	$5/2^+$ $7/2^+$ $5/2^+$ $3/2^+$	(M1(+E2)) M1(+E2) (M1(+E2))	0.7 7 0.4 4 0.6 6	4.0 <i>14</i> 3.4 <i>5</i> 1.7 <i>5</i>	
407.82	5/2+	127.5 2 183.7 2 206.7 1 252.2 ^a 2 407.8 1	17 4 30 8 52 7 43 ^a 12 100 8	280.222 224.25 201.179 155.456 0.0	5/2 ⁺ 7/2 ⁺ 5/2 ⁺ 3/2 ⁺ 7/2 ⁻	M1(+E2) M1(+E2) M1(+E2) (E1)	0.7 7 0.3 3 0.6 6	3.8 <i>13</i> 3.4 2 1.6 5 0.0218	
438.41	7/2+	158.3 <i>3</i> 390.7 <i>1</i> 438.4 <i>1</i>	0.8 <i>3</i> 6.6 <i>5</i> 100 <i>5</i>	280.222 47.71 0.0	5/2+ 9/2 ⁻ 7/2 ⁻	E1 E1		0.0238	
453.29	7/2+	229.1 3 252.2 ^{a} 2 453.2 3	$100 34 \\ 100^{a} 34 \\ 67 14$	224.25 201.179	$7/2^+$ $5/2^+$ $7/2^-$			0.0100	
473.52	7/2+	193.4 <i>3</i> 425.8 <i>1</i> 473.5 <i>1</i>	2.1 7 45 3	280.222 47.71	$5/2^+$ $9/2^-$ $7/2^-$	E1		0.0200	
655.39	(5/2)-	655.3 2	100 /	0.0	$7/2^{-}$	M1		0.153	
696.14	7/2-	40.748 ^{&} 6 648.5 <i>3</i> 696.2 <i>3</i>	& 100 <i>16</i> 77 <i>16</i>	655.39 47.71 0.0	(5/2) ⁻ 9/2 ⁻ 7/2 ⁻	M1 M1		0.158 0.131	

4

 $^{237}_{94}\mathrm{Pu}_{143}\text{-}4$

From ENSDF

 $^{237}_{94}\mathrm{Pu}_{143}\text{-}4$

L

γ (²³⁷Pu) (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^π	Mult. [#]	α [@]
908.90	7/2+	435.2 3	9.6 16	473.52	7/2+	M1	0.462
		455.8 <i>3</i>	3.5 8	453.29	$7/2^{+}$	M1	0.407
		501.2 <i>3</i>	10.8 16	407.82	$5/2^{+}$	M1	0.315
		504.8 <i>3</i>	7.3 16	404.19	$5/2^{+}$	M1	0.309
		861.2 <i>3</i>	14.2 16	47.71	9/2-		
		908.8 2	100 6	0.0	$7/2^{-}$		
1000.6	3/2+,5/2,7/2	720.4 5	100 21	280.222	$5/2^{+}$		
		1000.6 3	79 <i>21</i>	0.0	7/2-		

[†] Except for 145.544 γ , all energies are from ²³⁷Am ε decay. [‡] From ²³⁷Am ε decay.

[#] From ce measurements in ²³⁷Am ε decay. [@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&] Multiply placed with undivided intensity.

^{*a*} Multiply placed with intensity suitably divided.

From ENSDF

Adopted Levels, Gammas

 $^{237}_{94}\mathrm{Pu}_{143}\text{-}6$

6

Adopted Levels, Gammas

²³⁷₉₄Pu₁₄₃

Adopted Levels, Gammas (continued)

(3/2 ⁻)	591
(5/2-)	582

(1/2⁻) 545

 $^{237}_{94}\rm{Pu}_{143}$