Adopted Levels

		Type Full Eval	e Author uation M. S. Bas	r Citation sunia NDS 107,2323 (2006	Literature Cutoff Date 15-Mar-2006	
$Q(\beta^{-})=-2.68\times1$ Note: Current ev $\Delta Q(\beta^{-})=220(sys)$ For calculation of	0^3 syst; S valuation st), $\Delta S(n)$ of mass ex	$f(n)=7.54 \times 10^3$ has used the formula to the formula (syst), ΔS access by a semi-	syst; $S(p)=3.62\times10^{-10}$ bllowing Q record - $S(p)=60(syst), \Delta Q(a)$ hiempirical method,	P^{3} syst; $Q(\alpha)=6.20\times10^{3}$ syst -2710 syst 7680 syst 36 γ)=30(syst) 2003Au03. , see 1988Po04.	2012Wa38 620 syst 6200 syst 2003Au03.	
Assignment: ²³⁷ Np(32-MeV ³ He,3n) chem, ms (1975Ah05) ²³⁷ Np(42-MeV a,4n) chem, ms (1975Ah05) ²³⁹ Pu(d,xn) chem (1952Hi63)						
²³⁷ Am Levels						
E(level)	J^{π} $T_{1/2}$ Comments				mments	
0.0	0.0 $5/2^{(-)}$ 73.6 min 8 $\% \alpha = 0.025 3$; $\% \epsilon + \% \beta^+ = 99.975 3$ (α)/($\alpha + \epsilon$)=0.00025 3 was deduced by measuring the α and γ spectra of the same sample (1975Ah05). I γ (280.2 γ)=0.473 20 per ϵ decay was used. In 1952Hi63 an $\alpha/\epsilon = 9.1 \times 10^{-6}$ 33 value was determined from ce- and α -counting rates, assuming that ²³⁹ Pu(d,3n) and ²³⁹ Pu(d,4n) reactions had equal yields at E(d)=30-50 MeV. J ^{π} : log ft values of 6.8 and 6.9 for the ϵ decay to the $3/2^+$ state at 155.45 keV and to the 7/2 ⁺ state at 320.97 keV in ²³⁷ Pu, respectively, limit spin to 5/2. The possible ϵ decay to the $1/2^+$ state at 145.544 keV implies $J^{\pi} = 5/2^-$. Analogy with ²⁴¹ Am suggests 5/2[523] orbital. T _{1/2} : Weighted average of 73.0 min 10 (1975Ah05) and 74.4 min 12 (1972PoZS). Other measurement: \approx 80 min (1952Hi63).					
24.0×10 ² 20		5 ns 2	%SF>0 Only SF decay rep T _{1/2} : From 1970P E(level): From 197 reaction excitati was deduced fro production of th E=2400 200 ke ³ Assignment: ²³⁸ Pu fissioning isome For theoretical call For calculations of	worted. o01. 71Br39, a value of E=2400 \pm on function reported in 1970 om the difference between the isomeric and the ground st V was recommend in 1980Bj $_{1}(p,2n)$ excit (1970Po01); ²³⁷ rrs. See 1984B106 for calcula culations of E(level), T _{1/2} (SF f fission barrier see 1984Ku0	±200 was deduced from the fit to ²³⁸ Pu(p,2n) Po01. In 1970Po01 a value of E=3000 ±300 e Q values for ²³⁸ Pu(p,2n) reaction for ates; E=2100 200 was suggested in 1973Br38. (02. Np(α ,4n) excit (1973Fl03); systematics of ted excitation function for (α ,4n) reaction. 7) and T _{1/2} (γ), see 1972We09. 5.	