## <sup>236</sup>Np β<sup>-</sup> decay (155×10<sup>3</sup> y) 1981Li30,1983Ah02

| History         |             |                    |                        |  |  |  |
|-----------------|-------------|--------------------|------------------------|--|--|--|
| Туре            | Author      | Citation           | Literature Cutoff Date |  |  |  |
| Full Evaluation | Shaofei Zhu | NDS 182, 2 (2022). | 1-Apr-2022             |  |  |  |

Parent: <sup>236</sup>Np: E=0; J<sup> $\pi$ </sup>=6<sup>(-)</sup>; T<sub>1/2</sub>=1.55×10<sup>5</sup> y *I*; Q( $\beta$ <sup>-</sup>)=4.8×10<sup>2</sup> 5; % $\beta$ <sup>-</sup> decay=12.0 *I* 

 $^{236}$ Np-E,J<sup> $\pi$ </sup>,T<sub>1/2</sub>: From the Adopted Levels of  $^{236}$ Np.

<sup>236</sup>Np-Q(β<sup>-</sup>): From 2021Wa16.

 $^{236}$ Np-% $\beta^{-}$  decay: From the Adopted Levels of  $^{236}$ Np.

Assignment: parent of <sup>236</sup>Pu (1972En06).

1983Ah02: Activity from <sup>238</sup>U(d,4n), E=21 MeV, chemically purified from other reaction products. Measured γ, ce, K x ray, γγ.
1981Li30: Activity from <sup>235</sup>U(d,n), E=16 MeV, chemically purified from other reaction products. Measured α, γ, γγ, ce, mass-spectrometric measurement for <sup>235</sup>U/<sup>236</sup>U ratio to determine T<sub>1/2</sub>.

 $\alpha$ : Additional information 1.

### <sup>236</sup>Pu Levels

| E(level) <sup>†</sup> | J <sup>π‡</sup> |
|-----------------------|-----------------|
| 0                     | $0^{+}$         |
| 44.63 10              | $2^{+}$         |
| 147.45 10             | 4+              |
| 305.80 11             | $6^{+}$         |

<sup>†</sup> From  $E\gamma$ .

<sup>‡</sup> From the Adopted Levels.

#### $\beta^{-}$ radiations

| E(decay)                | E(level) | $I\beta^{-\dagger}$ | Log ft                      | Comments                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------|----------|---------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1.7×10 <sup>2</sup> 5) | 305.80   | 12.0 <i>I</i>       | 13.6 5                      | av E $\beta$ =46 15<br>I $\beta$ <sup>-</sup> : from <sup>236</sup> Pu $\alpha$ emission and from the intensity of the 158-keV transition, only<br>the 6 <sup>+</sup> level of the <sup>236</sup> Pu ground-state band appears to be populated. From an<br>intensity balance, one obtains $\%$ I $\beta$ <sup>-</sup> =13.4 8, highlighting a discrepancy between the<br>$\%\beta^-$ branch and the I $\gamma$ measurements. |
| $(3.3 \times 10^2 5)$   | 147.45   | <1.4                | >13.3 <sup>1</sup> <i>u</i> | av E $\beta$ =93 16<br>I $\beta^-$ : deduced from I( $\gamma$ +ce) balance at 147.42-keV level.                                                                                                                                                                                                                                                                                                                              |

<sup>†</sup> Absolute intensity per 100 decays.

 $\gamma(^{236}\text{Pu})$ 

Normalization factor=0.316 10 from I $\gamma$ (160.3 $\gamma$ )=36 1 per 100  $\varepsilon$  decay (1983Ah02) and  $\varepsilon$  branching=0.87.8 2 with I $\gamma$  normalized to I $\gamma$ (160.3 $\gamma$ )=100.

| $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger \#}$ | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $E_f$ J <sup>2</sup> | $\frac{\pi}{f}$ | Mult. <sup>‡</sup> | α        | Comments                                                                                                                                                                                                                                                               |
|------------------------|---------------------------|---------------|----------------------|----------------------|-----------------|--------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (44.63 10)             | 0.058 3                   | 44.63         | 2+                   | 0 0                  | +               | E2                 | 741 13   | $\alpha(L)=538 \ 10; \ \alpha(M)=150.1 \ 27; \ \alpha(N)=41.2 \ 7; \ \alpha(O)=9.69 \ 17; \ \alpha(P)=1.515 \ 27; \ \alpha(Q)=0.00326 \ 6 \ I_{\gamma}: deduced from I(\gamma+ce) balance at 44.6-keV level assuming I\beta^{-}=0. \ E_{\gamma}: from Adopted Gammas.$ |
| 102.82 2               | 2.9 2                     | 147.45        | 4+                   | 44.63 2              | +               | [E2]               | 13.87 19 | $\alpha'(L)=10.06 \ \hat{14}; \ \alpha(M)=2.82 \ 4; \ \alpha(N)=0.775 \ 11;$                                                                                                                                                                                           |

Continued on next page (footnotes at end of table)

#### $^{236}\text{Np}\,\beta^-$ decay (155×10<sup>3</sup> y) 1981Li30,1983Ah02 (continued) $\gamma$ (<sup>236</sup>Pu) (continued) $I_{\gamma}^{\dagger \#}$ $E_{\gamma}^{\dagger}$ E<sub>i</sub>(level) $\mathbf{J}_i^{\pi}$ $\mathbf{J}_{f}^{\pi}$ Mult.<sup>‡</sup> $E_f$ $\alpha$ Comments α(O)=0.1826 26; α(P)=0.0291 4 α(Q)=0.0001055 15 305.80 $6^{+}$ 147.45 4+ $\alpha(K)=0.1927\ 27;\ \alpha(L)=1.413\ 20;\ \alpha(M)=0.394\ 6;$ 158.35 2 13.5 7 E2 2.139 30 $\alpha(N)=0.1084$ 15; $\alpha(O)=0.0256$ 4 $\alpha$ (P)=0.00414 6; $\alpha$ (Q)=2.465×10<sup>-5</sup> 35 E<sub>y</sub>: other: 158.34 (1981Li30).

<sup>†</sup> From 1983Ah02, unless otherwise noted.

<sup>‡</sup> From Adopted Gammas.

<sup>#</sup> For absolute intensity per 100 decays, multiply by 0.316 10.

# $^{236}$ Np $\beta^-$ decay (155×10<sup>3</sup> y) 1981Li30,1983Ah02

