Adopted Levels, Gammas

		Тур	Туре		History Citation	Literature Cutoff Date			
		Full Eval	Full Evaluation Sh		NDS 182, 2 (2022).	1-Apr-2022			
$Q(\beta^{-}) = -3139 SY; S \Delta Q(\beta^{-}) = 120 (2021) S(2n) = 13591 7, S(2n) = $	(n)=735 Va16). p)=9821 nation 1	52 21; S(p)=54 .4 16 (2021W	130.5 <i>18</i> ; Q(7 <mark>a16</mark>).	α)=5867.1:	5 8 2021Wa16 ²³⁶ Pu Levels				
				Cross R	eference (XREE) Flags				
				C1033 K	elefence (AREF) Trags				
		A B C D	$^{236}Np \beta^{-1}$ $^{236}Np \beta^{-1}$ $^{240}Cm \alpha \alpha^{-1}$ $^{236}Am \varepsilon \alpha^{-1}$	decay (155 decay (22.5 lecay lecay (3.6 r	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	n ε decay (2.9 min) x,3nγ) (²⁰⁹ Bi, ²¹⁰ Pbγ)			
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF			Comments			
0 [#]	0+	2.858 y 8	ABCDEFG	%α=100; %SF=1.9×10 ⁻⁷ 4 %SF: from T _{1/2} (SF)=1.5×10 ⁹ y 3 as unweighted average of 3.5×10 ⁹ y 10 (1952Gh27), 2.09×10 ⁹ y 6 (1988SeZY), 1.36×10 ⁹ y 20 (1990Og01,1995Hu21) and 1.13×10 ⁹ y 13 (1995Hu21). T _{1/2} : weighted average of 2.851 y 8 (1957Ho66) and 2.866 y 9 (1984Na30). Other value: 2.7 y 3 (1949Ja01). ²³⁶ Pu decay by ²⁸ Mg emission observed by 1995Hu21 (15 tracks), 1990Og01 (two ²⁸ Mg tracks). Partial T _{1/2} =1.06×10 ¹⁴ y 28 (1995Hu21), ≈1.5×10 ¹⁴ y (1990Og01). T _{1/2} (²⁸ Mg, Calculated)= 4.12×10 ¹³ y (Cluster					
44.63 [#] 9	2+		ABCDEFG	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
147.45 [#] 9	4+		A CDEFG						
305.80 [#] 10	6+		A CD FG						
515.70 [#] 22	8+		FG						
698.31 [@] 12	1-		E						
758.02 17	3-		E						
773.5# 3	10^{+}		FG						
866.00 ^w 15	5-		D						
1074.3 [#] 4 1185.45 15	12+ 5-	1.2 μs 3	FG D	%IT=100 J^{π} : M1 γ configu) to 5 ⁻ ; γ to 4 ⁺ and 6 ⁺ aration=((π 5/2[523])(π	; proposed as K-isomer with $5/2[642]$), $K^{\pi}=5^{-}$ (2005As01).			
1311.51 ^{&} 23	(0 ⁻)		Е	J^{π} : from	systematics with ²⁴⁰ Pu	•			
1340.82 ^{&} 19	(2^{-})		Е	J^{π} : from	systematics with ²⁴⁰ Pu				
1413.6 [#] 4	14^{+}		FG		-				
1786.0 [#] 5	16^{+}		FG						
2188.0 7	18+		G						
$2615.7 \ 9 \approx 3.\times 10^3$	20 ⁺ (0 ⁺)	37 ps 4	G	%SF≤10 J ^{π} : groun (1974) E(level): T _{1/2} : fro	0 ad state in the second p MeYP,1977Me08). from ²³⁷ Np(p,2n) and m 1977Me08 using ²³⁴	otential well from syst of fission isomers $^{234}U(\alpha,2n)$ (1974MeYP). $U(\alpha,2n)$ reaction; other: 40 ps 15 (1974MeYP).			

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

²³⁶Pu Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
				Q(intrinsic)=37 b $+14-8$ (1977Me08).
3063 7 10	22+		G	7651. no y decay observed (1977)(1008).
3529.6 11	24^{+}		G	
$4.1 \times 10^3 2$	2.	34 ns 8		%SF≤100
				E(level), $T_{1/2}$: from ²³⁷ Np(p,2n) (1969La14).
				J^{π} : not determined, possible two-quasi-particle K-isomer in the second potential well

 $\gamma(^{236}\mathrm{Pu})$

from syst of fission isomers (1977Me08). %SF: no γ decay observed (1969La14).

[†] Deduced by the evaluator from a least-squares fit to γ -ray energies.

[±] From band structure, unless indicated otherwise. [#] Band(A): $K^{\pi}=0^+$ g.s. rotational band. Band assignment from energy systematics (1983Ha31). [@] Band(B): $K^{\pi}=0^-$ octupole vibrational band. Assignment based on decay branching ratio to g.s. band (2005As01).

& Band(C): $K^{\pi}=0^{-}(\pi, 5/2[523])(\pi, 5/2[642])$, from syst with ²⁴⁰Pu (2005As01).

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.	α	Comments
44.63	2+	44.63 10	100	0	0+	E2	741 13	$\begin{array}{l} \alpha(\text{L}) = 538 \ 10; \ \alpha(\text{M}) = 150.1 \ 27; \ \alpha(\text{N}) = 41.2 \ 7; \\ \alpha(\text{O}) = 9.69 \ 17; \ \alpha(\text{P}) = 1.515 \ 27; \ \alpha(\text{Q}) = 0.00326 \\ 6 \end{array}$
147.45	4+	102.82 2	100	44.63	2+	[E2]	13.87 19	E _γ ,I _γ ,Mult.: from ²³⁶ Np β^- decay (22.5 h). α (L)=10.06 <i>14</i> ; α (M)=2.82 <i>4</i> ; α (N)=0.775 <i>11</i> ; α (O)=0.1826 <i>26</i> ; α (P)=0.0291 <i>4</i> α (Q)=0.0001055 <i>15</i>
305.80	6+	158.35 2	100	147.45	4+	E2	2.139 <i>30</i>	E _γ ,I _γ : from ²³⁶ Np β ⁻ decay (153×10 ³ y). α (K)=0.1927 27; α (L)=1.413 20; α (M)=0.394 6; α (N)=0.1084 15; α (O)=0.0256 4 α (P)=0.00414 6; α (Q)=2.465×10 ⁻⁵ 35 E _γ ,I _γ : from ²³⁶ Np β ⁻ decay (153×10 ³ y). Mult i from ²³⁵ U(α 2m)
515.70	8+	209.9 [†] 2	100†	305.80	6+	E2	0.714 10	$\alpha(K)=0.1402 \ 20; \ \alpha(L)=0.417 \ 6; \ \alpha(M)=0.1157 \ 17; \ \alpha(N)=0.0318 \ 5; \ \alpha(O)=0.00753 \ 11 \ \alpha(P)=0.001235 \ 18; \ \alpha(Q)=1.096\times10^{-5} \ 16 \ Mult.; \ from \ ^{235}U(\alpha,3n\gamma).$
698.31	1-	653.68 [‡] 12	100 [‡] 15	44.63	2+	[E1]	0.00865 12	$\begin{aligned} &\alpha(K) = 0.00699 \ 10; \ \alpha(L) = 0.001254 \ 18; \\ &\alpha(M) = 0.000300 \ 4; \ \alpha(N) = 8.12 \times 10^{-5} \ 11 \\ &\alpha(O) = 2.004 \times 10^{-5} \ 28; \ \alpha(P) = 3.72 \times 10^{-6} \ 5; \\ &\alpha(Q) = 2.229 \times 10^{-7} \ 31 \end{aligned}$
		698.3 [‡] 2	71 [‡] 11	0	0+	[E1]	0.00766 11	$\begin{aligned} &\alpha(K) = 0.00620 \ 9; \ \alpha(L) = 0.001104 \ 15; \\ &\alpha(M) = 0.000264 \ 4; \ \alpha(N) = 7.15 \times 10^{-5} \ 10 \\ &\alpha(O) = 1.765 \times 10^{-5} \ 25; \ \alpha(P) = 3.28 \times 10^{-6} \ 5; \\ &\alpha(Q) = 1.985 \times 10^{-7} \ 28 \end{aligned}$
758.02	3-	610.8 [‡] <i>3</i>	58 [‡] 11	147.45	4+	[E1]	0.00982 14	$\begin{aligned} &\alpha(K) = 0.00792 \ 11; \ \alpha(L) = 0.001431 \ 20; \\ &\alpha(M) = 0.000343 \ 5; \ \alpha(N) = 9.28 \times 10^{-5} \ 13 \\ &\alpha(O) = 2.289 \times 10^{-5} \ 32; \ \alpha(P) = 4.24 \times 10^{-6} \ 6; \\ &\alpha(Q) = 2.516 \times 10^{-7} \ 35 \end{aligned}$
		713.3 [‡] 2	100 [‡] 17	44.63	2^{+}	[E1]	0.00737 10	$\alpha(K)=0.00597 \ 8; \ \alpha(L)=0.001060 \ 15;$

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

γ ⁽²³⁶Pu) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.	α	Comments
								α (M)=0.000254 4; α (N)=6.86×10 ⁻⁵ 10 α (O)=1.694×10 ⁻⁵ 24; α (P)=3.15×10 ⁻⁶ 4; α (Q)=1.912×10 ⁻⁷ 27
773.5	10+	257.8 [†] 2	100 [†]	515.70	8+	[E2]	0.346 5	α (K)=0.1006 <i>14</i> ; α (L)=0.1785 <i>26</i> ; α (M)=0.0492 <i>7</i> ; α (N)=0.01350 <i>19</i> ; α (O)=0.00321 <i>5</i>
866.00	5-	560.3 [#] 2	43 [#] 8	305.80	6+	[E1]	0.01156 <i>16</i>	$\alpha(P)=0.000532 \ 8; \ \alpha(Q)=6.41\times10^{-5} \ 9$ $\alpha(K)=0.00931 \ 13; \ \alpha(L)=0.001699 \ 24; \alpha(M)=0.000408 \ 6; \ \alpha(N)=0.0001103 \ 15 \alpha(O)=2.72\times10^{-5} \ 4; \ \alpha(P)=5.02\times10^{-6} \ 7; \alpha(Q)=2.94\times10^{-7} \ 4$
		718.6 [#] 2	100 [#] 16	147.45	4+	[E1]	0.00727 10	$\alpha(K)=0.00589 \ 8; \ \alpha(L)=0.001045 \ 15; \\ \alpha(M)=0.0002502 \ 35; \ \alpha(N)=6.77\times10^{-5} \ 9 \\ \alpha(O)=1.671\times10^{-5} \ 23; \ \alpha(P)=3.11\times10^{-6} \ 4; \\ \alpha(Q)=1.888\times10^{-7} \ 26$
1074.3	12+	300.8 [†] 2	100 [†]	773.5	10+	[E2]	0.2097 30	$\alpha(K)=0.0769 \ 11; \ \alpha(L)=0.0970 \ 14; \\ \alpha(M)=0.0265 \ 4; \ \alpha(N)=0.00729 \ 10; \\ \alpha(O)=0.001735 \ 25 \\ (D)=0.0001741 \ (a)=0.0000000 \ a)=0.00000000 \ a)=0.00000000000000000000000000000000000$
1185.45	5-	319.50 [#] 11	66 [#] 10	866.00	5-	M1(+E2)	0.6 4	$\alpha(P)=0.0002914; \alpha(Q)=4.39\times10^{-6} 6$ $\alpha(K)=0.44; \alpha(L)=0.124; \alpha(M)=0.0309;$ $\alpha(N)=0.008123; \alpha(O)=0.00206;$ $\alpha(P)=3.6\times10^{-4} 13$ $\alpha(Q)=1.8\times10^{-5} 14$ Write form 236 Am a decay (2.6 min)
		879.7 [#] 2	100 [#] 14	305.80	6+	[E1]	0.00506 7	Mult: from ²⁻² Am ε decay (3.6 mm). $\alpha(K)=0.00412 \ 6; \ \alpha(L)=0.000717 \ 10;$ $\alpha(M)=0.0001712 \ 24; \ \alpha(N)=4.63\times10^{-5} \ 6$ $\alpha(O)=1.145\times10^{-5} \ 16; \ \alpha(P)=2.144\times10^{-6}$ $30; \ \alpha(Q)=1.334\times10^{-7} \ 19$ B(E1)(W n)=9.0×10^{-11} \ 26
		1037.8 [#] 2	53 [#] 8	147.45	4+	[E1]	0.00380 5	$\alpha(K)=0.00309 \ 4; \ \alpha(L)=0.000532 \ 7; \\ \alpha(M)=0.0001268 \ 18; \ \alpha(N)=3.43\times10^{-5} \ 5; \\ \alpha(O)=8.50\times10^{-6} \ 12 \\ \alpha(P)=1.596\times10^{-6} \ 22; \ \alpha(Q)=1.010\times10^{-7} \ 14 \\ B(E1)(Wu)=2.9\times10^{-11} \ 9$
1311.51	(0^{-})	$613.2^{\ddagger}2$	100 [‡]	698.31	1-			D(D1)((1.u.)-2.)/(10)
1340.82	(2^{-})	582.8^{\ddagger} 2	100^{\ddagger} 15	758.02	3-			
10.000	(-)	$642.5^{\ddagger} 2$	53 [‡] 9	698.31	1-			
1413.6	14+	339.3 [†] 2	100 [†]	1074.3	12+	[E2]	0.1459 21	α (K)=0.0620 9; α (L)=0.0614 9; α (M)=0.01670 24; α (N)=0.00458 6; α (O)=0.001094 16 α (P)=0.0001850 26; α (O)=3.31×10 ⁻⁶ 5
1786.0	16+	372.4 [†] 3	100 [†]	1413.6	14+	[E2]	0.1120 <i>16</i>	$\alpha(K)=0.0524 \ 7; \ \alpha(L)=0.0437 \ 6; \\ \alpha(M)=0.01181 \ 17; \ \alpha(N)=0.00324 \ 5; \\ \alpha(O)=0.0000774 \ 11 \\ (D)=0.000174 \ 10 \ (D)=2 \ (D)$
2188.0	18+	402.0.5	100	1786.0	16+			$\alpha(P)=0.0001319$ 19; $\alpha(Q)=2.68\times10$ ° 4
2615.7	20^{+}	427.7 [@] 5	100@	2188.0	18+			
3063.7	20^{-20}	448 0 0 5	100@	2615 7	20^{+}			
3529.6	24+	465.9 [@] 5	100@	3063.7	22^{+}			

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

 γ (²³⁶Pu) (continued)

- [†] From ²³⁵U(α,3nγ). [‡] From ²³⁶Am ε decay (2.9 min). [#] From ²³⁶Am ε decay (3.6 min). [@] From ²³⁷Np(²⁰⁹Bi,²¹⁰Pbγ).

 $^{236}_{94}\rm{Pu}_{142}$

²³⁶₉₄Pu₁₄₂