$^{240}\mathrm{Cm}~lpha~\mathrm{decay}$ | History | | | | | | | |-----------------|-------------|--------------------|------------------------|--|--|--| | Type | Author | Citation | Literature Cutoff Date | | | | | Full Evaluation | Shaofei Zhu | NDS 182, 2 (2022). | 1-Apr-2022 | | | | Parent: 240 Cm: E=0.0; J^{π} =0+; $T_{1/2}$ =27 d 1; $Q(\alpha)$ =6397.8 6; $\%\alpha$ decay=99.7 3 The measured half-lives are 26.8 d (1949Se01) and 28 d (1967Ba42). $T_{1/2}(^{240}Cm)=27$ d I, adopted by 1990Sh04, is used in calculations. $\%\varepsilon(^{240}\text{Cm})<0.5$ was deduced by 1952Hi11 from nonobservation of ε decay to ^{240}Am . $\%\alpha=99.7$ 3 is used here in order to calculate Δr_0 . ## ²³⁶Pu Levels | E(level) [†] | $J^{\pi \dagger}$ | |-----------------------|-------------------| | 0.0‡ | 0+ | | 44.63 [‡] 9 | 2+ | | 147.45 [‡] 9 | 4+ | | 305 80‡ 10 | 6+ | [†] From the Adopted Levels. ## α radiations | $E\alpha^{\dagger}$ | E(level) | $I\alpha^{\ddagger @}$ | HF# | |---------------------|----------|------------------------|--------| | 5989 | 305.80 | 0.014 | 165 | | 6147 | 147.45 | 0.052 | 270 | | 6247.7 5 | 44.63 | 28.9 8 | 1.52 5 | | 6290.5 5 | 0.0 | 71.1 8 | 1.0 | [†] Energies of α particles to the g.s. and to the 44.63-keV level are values recommended in 1991Ry01; $E\alpha$'s to higher levels are from 1976BaZZ, as adopted in 1991Sc08. $^{^{240}}$ Cm- $T_{1/2}$: From the Adopted Levels of 240 Cm (2008Si25). ²⁴⁰Cm-Q(α): From 2021Wa16. $^{^{\}ddagger}$ Band(A): K= 0^+ g.s. rotational band. $^{^{\}ddagger}$ α particle intensity per 100 α decays. I α of α particles to the g.s. and to the 44.63-keV level are values recommended in 1991Ry01. Their uncertainties should be equal. The evaluator recommends Δ I α =0.8. I α to higher levels are from 1976BaZZ, as adopted in 1991Sc08. [#] $r_0(^{236}\text{Pu})$ =1.4949 18, calculated from HF(6290.5 α)=1.0. [@] For absolute intensity per 100 decays, multiply by 0.997 3. ## $^{240}\mathrm{Cm}~\alpha~\mathrm{decay}$ Band(A): K=0+ g.s. rotational band 6+ 305.80 4+ 147.45 2+ 44.63 0.0 $^{236}_{\ 94}\mathrm{Pu}_{142}$