236 Th β^- decay 1984Mi02

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Shaofei Zhu	NDS 182, 2 (2022).	1-Apr-2022			

Parent: ²³⁶Th: E=0; $J^{\pi}=0^+$; $T_{1/2}=37.5 \text{ min } 2$; $Q(\beta^-)=921 \ 20$; $\%\beta^-$ decay=100.0 ²³⁶Th-Q(β^{-}): from 2021Wa16.

The decay scheme of 1984Mi02 supersedes the scheme of 1973Or06 because of the observation of more complete γ rays in cascades. 1984Mi02: ²³⁶Th decay was assigned based on the correlation of ²³⁶Pa daughter decay in equilibrium from ²³⁶Th sources

produced by ²³⁸U(p,3p) followed by chemical and mass separation.

1973Or06: ²³⁶Th sources produced by ²³⁸U(p,3p).

Other: 1973Ka10.

x-ray: $I\gamma(Pa \text{ K x ray})/I\gamma(642\gamma)=0.32 \text{ 8 from an equilibrium source gives } I\gamma(Pa \text{ K x ray})=(0.32 \text{ 8}) \times 0.37 \text{ 2 x } 100=12\% \text{ 4 (per star)}$ 100 β^- decays of ²³⁶Pa) (1973Or06).

 α : Additional information 1.

²³⁶Pa Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}
0	$1^{(+)}$	9.1 min <i>1</i>
31.54 9		
110.76 8	$(0^{-},1)$	
227.42 20		
340.20 7	$(0^{-},1)$	
580.81 11	$(0^{-},1)$	
678.11 8	$(0^{-},1)$	

[†] From least square fit to $E\gamma's$ by evaluator.

[‡] From Adopted Levels.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(243 20) (340 20) (581 20) (694 20) (810 20) (921 20)	678.11 580.81 340.20 227.42 110.76	$ \begin{array}{r} 1.32 \ 14 \\ 0.52 \ 10 \\ 3.4 \ 12 \\ 2.5 \ 6 \\ 2.0 \ 17 \\ 94 \ 5 \ 12 \\ \end{array} $	5.4 <i>I</i> 6.4 2 6.4 2 6.8 2 7.1 3 5.6 <i>J</i>	av $E\beta$ =66.3 60 av $E\beta$ =95.6 62 av $E\beta$ =173.4 68 av $E\beta$ =253.1 72 av $E\beta$ =203.2 74
(921 20)	0	94.3 12	5.0 1	$I\beta^{-}:\beta^{-}$ intensity to g.s. + 31.5-keV level.

[†] Absolute intensity per 100 decays.

$\gamma(^{236}\text{Pa})$

Iy normalization: 1984Mi02 provide absolute intensities noting "The gamma-ray intensities of the parent 37-min ²³⁶Th were also put on an absolute basis through measurements in sources in which parent and daughter were in equilibrium; proper account was taken of the parent/daughter ratio (0.76).".

				236	Th β^- d	ecay 19	84Mi02 (co	ntinued)
					<u>-</u>	γ(²³⁶ Pa) (c	ontinued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [‡]	α	Comments
(31.5)		31.54		0	1 ⁽⁺⁾			E_{γ} : not observed, deduced from level scheme
110.8 <i>1</i>	4.2 12	110.76	(0 ⁻ ,1)	0	1 ⁽⁺⁾			E_{γ} : from 1984Mi02; other: 110.7 5 (1973Or06). I _{\gamma} : from 1984Mi02; other: 10.5 28 relative to
112.8 2	0.24 9	340.20	(0 ⁻ ,1)	227.42				$F_{\gamma}(642\gamma)=100 (19730006).$ $E_{\gamma}: from 1984Mi02; other: 112.7 +5-1 (1973006).$ $I_{\gamma}: from 1984Mi02; other: 2.6 12 relative to F_{\gamma}(6422\gamma)=100 (1973006).$
^x 131.6 <i>10</i>	0.56 28							E_{γ} : from 1973Or06. I_{γ} : from 2.0 <i>10</i> relative to $I_{\gamma}(642\gamma)=100$
196.0 <i>5</i>	0.69 14	227.42		31.54		(M1)	3.01 5	$\alpha(K) = 2.40 \ 4; \ \alpha(L) = 0.461 \ 7; \ \alpha(M) = 0.1111 \ 18; \ \alpha(N) = 0.0298 \ 5; \ \alpha(O) = 0.00715 \ 11 \ \alpha(P) = 0.001366 \ 22; \ \alpha(Q) = 0.0001128 \ 18 \ F. \ L \ from \ 1084 MiO2$
229.5 1	0.7 4	340.20	(0-,1)	110.76	(0 ⁻ ,1)	(M1)	1.935 27	$\alpha(K)=1.543\ 22;\ \alpha(L)=0.296\ 4;\ \alpha(M)=0.0712$ $10;\ \alpha(N)=0.01910\ 27;\ \alpha(O)=0.00458\ 6$ $\alpha(P)=0.000875\ 12;\ \alpha(Q)=7.23\times10^{-5}\ 10$ $E_{\gamma}:\ from\ 1984Mi02;\ other:\ 229.6\ 10$ (1973Or06). $I_{\gamma}:\ from\ 1984Mi02;\ other:\ 2.0\ 10\ relative\ to$ $I_{\gamma}(642\gamma)=100\ (1973Or06).$
308.7 1	0.42 5	340.20	$(0^{-},1)$	31.54				1/(0.27) 100 (19700100).
340.1 <i>I</i> ^x 392.4 <i>I</i> ^x 414.8 <i>3</i> ^x 434.3 <i>I</i>	0.67 9 0.17 3 0.13 3 0.67 9	340.20	(0-,1)	0	1(+)			
549.2 1	0.32 9	580.81	$(0^{-},1)$	31.54				
567.1 3	0.13 3	678.11	(0-,1)	110.76	$(0^{-},1)$			
581.1 2 ^x 586.4 2 ^x 599.7 1	0.20 <i>4</i> 0.09 <i>4</i> 0.24 <i>3</i>	580.81	(0-,1)	0	1(+)			
646.6 1	0.72 11	678.11	$(0^{-},1)$	31.54				
678.1 <i>1</i> x719 9 <i>1</i>	0.47 7	678.11	(0^-,1)	0	$1^{(+)}$			

[†] From 1984Mi02, unless otherwise noted. Absolute intensity from 1984Mi02 relative to $I\gamma(642\gamma)$ in ²³⁶Pa at equilibrium, corrected by parent/daughter ratio of 0.76 based on their lifetimes.

[‡] From I(K x ray)/I γ suggesting that most of the intense γ rays with E γ >112.6 keV (the K-shell binding energy in Pa) should be M1 (1984Mi02).

Absolute intensity per 100 decays.

 $x \gamma$ ray not placed in level scheme.

$\frac{236}{1984}$ Th β^- decay 1984 Mi02

Decay Scheme

3