Adopted Levels

Type Author Citation Literature Cutoff Date
Full Evaluation Shaofei Zhu NDS 182, 2 (2022). 1-Apr-2022

S(n)=7300 SY; S(p)=1761 SY; Q(α)=7697 SY 2021Wa16 Δ S(n)=540; Δ S(p)=375, Δ Q(α)=200 (2021Wa16). S(2N)=15996 (syst) 390, S(2P)=5498 (syst) 390, Q(ε p)=1628 (syst) 360 (2021Wa16).

Α

²³⁶Bk Levels

Cross Reference (XREF) Flags

A 240 Es α decay

 $\frac{\text{E(level)}}{0} \quad \frac{J^{\pi}}{(4^{+},6^{-})} \quad \frac{T_{1/2}}{22 \text{ s} + 13 - 6} \quad \frac{XREB}{A}$

Comments $\%\varepsilon + \%\beta^+ \approx 83; \%\alpha \approx 17; \%\varepsilon SF = 42$

% ϵ ,% α : from 2017Ko02 based on 240 Es α decay only correlated to 236 Cm α decay with no observation of 240 Es and 236 Bk α - α correlation, however, as pointed out in 2020Po07, events assigned as 213 Rn α decay in fig.4(c) of 2017Ko02 could be 236 Bk α decay. As a result, % α and % ϵ are deduced by evaluator based on total 12 240 Es α -decay events correlated with 10 236 Cm α -decay events and 2 236 Bk α -decay events.

J^{π}: from systematics with $\pi 3/2[521]$ (f_{7/2}) and $\pi 7/2[633]$ orbitals expected to be near the proton Fermi surface for Z=97 and $\nu 5/2[752]$ (j_{15/2}) near the neutron Fermi surface for N=139 resulting in two possible configurations $\pi 3/2[521] \otimes \nu 5/2[752]$ or $\pi 7/2[633] \otimes \nu 5/2[752]$ for the ground state. Tentative assignments of $K^{\pi}=4^+$ or $K^{\pi}=6^-$ based on the Gallagher-Moszkowski rule.

 $T_{1/2}$: from ER- α -fission(t) (2017Ko02). Other: \approx 19 s (2020Po07, from two recoil- α events).

E(level): from difference in energies of two α 's from ²⁴⁰Es.

J^{π}: tentative assignments of $K^{\pi}=1^+$ or $K^{\pi}=1^-$ based on the Gallagher-Moszkowski rule for configurations $\pi 3/2[521] \otimes \nu 5/2[752]$ or $\pi 7/2[633] \otimes \nu 5/2[752]$; or $K^{\pi}=1^+$ based on the α decay with HF=2 from ²⁴⁰Es $K^{\pi}=(1^+)$ g.s. state with configuration $\pi 7/2[633] \otimes \nu 5/2[633]$ as proposed in the Adopted Levels of ²⁴⁰Es.

102 43 (1)