²³⁵Np ε decay 1958Gi05

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	E. Browne, J. K. Tuli	NDS 122, 205 (2014)	1-Feb-2014				

Parent: ²³⁵Np: E=0; $J^{\pi}=5/2^+$; $T_{1/2}=396.2$ d *12*; $Q(\varepsilon)=124.0$ *9*; $\%\varepsilon$ decay=99.9974 *1*

No γ rays were observed. Based on (L xray)(L xray) coincidences, an upper limit of 2% was deduced for ε populations to levels above 13 keV, and from the 26-min activity in equilibrium with ²³⁵Np, a total ε feeding of 0.1% to the 1/2[631] rotational band.

K x ray, L x ray studied by 1956Ho46, 1958Gi05, 1972Ha21, 1972Mc25, 1983Ah02. L x ray/K x ray= 18.5 *10* measured by 1983Ah02. L x ray= 34.0% *4*, K α_2 x ray= 0.59% *14*, K α_1 x ray= 0.95% *23*, K β x ray= 0.46% *11*, calculated by evaluator using the computer program RADLST.

²³⁵U Levels

E(level)	$J^{\pi \dagger}$	T _{1/2} †
0	7/2-	7.04×10 ⁸ y <i>I</i>
0.07	$1/2^{+}$	≈26 min
13	3/2+	
46	9/2-	
52	5/2+ 7/2+	
82	$7/2^{+}$	

[†] From Adopted Levels.

 ε radiations

 $\varepsilon(L1)/\varepsilon(K) = 29.4, \ \varepsilon(L)/\varepsilon(K) = 32.4, \ \varepsilon(M)/\varepsilon(L) = 0.46.3 \ (1972Mc25).$

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	Comments
(42.0 9)	82	< 0.1	>8.5	
(72.0 9)	52	< 0.1	>9.2	
(78.0 9)	46	<2	>8.0	
(111.0 9)	13	< 0.1	>9.7	
(123.9 9)	0.07	< 0.1	>9.8	
(124.0 9)	0	>97.9	<6.8	ε K=0.021 5; ε L=0.670 3; ε M+=0.3084 19

 † For absolute intensity per 100 decays, multiply by 0.999974 1.