²³⁵Am ε decay 2004As12

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	E. Browne, J. K. Tuli	NDS 122, 205 (2014)	1-Feb-2014				

Parent: ²³⁵Am: E=0; J^{π}=(5/2⁻); T_{1/2}=10.3 min 6; Q(ε)=2442 56; % ε +% β ⁺ decay=99.60 5 ²³⁵Am-T_{1/2}: From 2004Sa05.

²³⁵Am- $\%\varepsilon$ + $\%\beta$ ⁺ decay: $\%\alpha$ =0.40 5 (2004Sa05).

2004As12: Activity produced by ²³³U(⁶Li,4n), E=34-42 MeV. Reaction products stopped in He gas loaded with PbI₂ clusters, and transported into an ion source of ISOL by gas-jet stream. Products mass separated with a resolution of M/ Δ M \approx 800. separated ions implanted into a Si α detector, two Ge detectors used for γ -rays. Measured: α , γ , $\alpha\gamma$, $\gamma\gamma$, Np K x ray, and Pu K x ray, L x ray, studied ²³⁵Am ε and α decay. Others: 2002As08, 2003Na10.

2004Sa05: Measured $E\alpha$, $T_{1/2}$.

2000SaZO: Activity produced by ²³³U(⁶Li,4n), E=45.5 MeV. Mass-separated and assigned to ²³⁵Am. Measured γ rays, Pu K x ray, Np K x ray, α particles (E α). Detectors: Si-pin photodiodes for α particles; High-purity Ge for γ rays. Deduced half-life, α/ε branching ratio. No specific γ rays were reported, and no decay scheme was constructed.

All data are from 2004As12, unless otherwise stated.

²³⁵Pu Levels

E(level)	J^{π}	Comments
0.0	$5/2^{+}$	Possible configuration= $v5/2[633]$.
41.90 19	$(7/2^+)$	possible configuration= $v5/2[633]$.
183.70 17	$(3/2^+)$	J^{π} : Possible configuration= $v1/2[631]$.
265.37 16	$(5/2^+)$	Suggested configuration= $v3/2[631]$.
290.53 16	$(5/2^{-})$	Suggested Configuration= $v5/2[752]$.
535.10 17	$(5/2^+)$	Suggested Configuration= $v5/2[622]$.
639.1 <i>3</i>		
825.9 <i>3</i>		
1029.5 <i>3</i>		
1118.8 <i>3</i>		

[†] Configurations are suggested based on expected log *ft* values and similar transitions in neighboring nuclides.

 ε, β^+ radiations

E(decay)	E(level)	Ιβ ⁺ #	Ie#	Log ft	$I(\varepsilon + \beta^+)^{\dagger \#}$	Comments
(2.44×10 ³ 6)	0.0	<0.40	<32	>6.0	<32 [‡]	av E β =652 26; ε K=0.7605 11; ε L=0.1678 6; ε M+=0.05912 23 I($\varepsilon + \beta^+$): Estimated intensity to g.s.+42 level based on observed K x ray – K x ray based on all γ 's, except 183.7 γ , assumed E1. 183.7 γ is M1+E2.

[†] Not determined explicitly in 2004As12 due to lack of knowledge of total internal conversion coefficients of observed γ transitions.

[‡] Combined for 0+41.9 level is deduced (2004As12) As 20 12 from analysis of Pu K x ray intensity.

[#] For absolute intensity per 100 decays, multiply by 0.9960 5.

235 Am ε decay 2004As12 (continued)

 $\gamma(^{235}\text{Pu})$

I(Pu K_{$\alpha 1$} x rays)=240 50; observed in coincidence with ²³⁵Pu γ rays.

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	Comments
(41.9)		41.90	$(7/2^+)$	0.0	5/2+		E_{γ} : transition not observed due to its large internal conversion coefficient.
^x 169.6 2	13 4						
183.7 2	20 6	183.70	$(3/2^+)$	0.0	$5/2^{+}$	M1+E2	α (K)exp=3.3 13
							α (K)exp: from intensity ratio between the 183.7 γ -rays and Pu K _{α} x- contribution of x rays from electron capture was subtracted in this analysis by 2004As12.
223.5 2	42 9	265.37	$(5/2^+)$	41.90	$(7/2^+)$		
244.6 2	13 6	535.10	$(5/2^+)$	290.53	$(5/2^{-})$		
248.6 2	198	290.53	$(5/2^{-})$	41.90	$(7/2^+)$		
265.3 2	35 8	265.37	$(5/2^+)$	0.0	$5/2^{+}$		
269.7 2	38 11	535.10	$(5/2^+)$	265.37	$(5/2^+)$		
290.6 2	100 14	290.53	$(5/2^{-})$	0.0	$5/2^{+}$		
351.4 2	30 9	535.10	$(5/2^+)$	183.70	$(3/2^+)$		
373.7 2	33 12	639.1		265.37	$(5/2^+)$		
642.2 2	20 6	825.9		183.70	$(3/2^+)$		
739.0 2	36 11	1029.5		290.53	$(5/2^{-})$		
x749.1 2	36 11						
828.3 2	27 8	1118.8		290.53	$(5/2^{-})$		

[†] Determined from both singles and coincidence γ -ray spectra. The large uncertainties are due to low statistics and poor peak-to-background ratios. ^x γ ray not placed in level scheme.

²³⁵₉₄Pu₁₄₁