		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, J. K. Tuli	NDS 108, 681 (2007)	1-Jun-2006

Parent: ²³⁴Pa: E=73.92+x; $J^{\pi}=(0^{-})$; $T_{1/2}=1.159 \text{ min } 11$; $Q(\beta^{-})=2195 4$; $\%\beta^{-}$ decay=99.84 4

Additional information 1. The β -decay scheme of 1.17-min ²³⁴Pa is based mainly on studies by 1963Bj02, 1967Wa09, and 1975Ar23.

²³⁴U Levels

Additional levels at 750 keV, 1353 keV, and 1759 keV have been proposed in 1999Nz01 with insufficient supporting experimental evidence.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0 ^{<i>a</i>}	0^{+}		
43.4978 ^a 10	2+		
143.24 ^a 7	4+		
786.312 <mark>b</mark> 5	1-		
809.96 [°] 5	0^{+}	<0.1 ns	T _{1/2} : From 1962Lo11.
849.23 ^b 7	3-		
851.75 [°] 4	2^{+}		
926.688 ^d 20	2^{+}		
989.389 ^e 18	2^{-}		
1044.539 ^f 6	0^{+}		
1085.11 ^{<i>f</i>} 4	2^{+}		
1126.37 <mark>8</mark> 4	2^{+}		
1174.1 4	$(1,2^{+})$		
1237.35 ^h 5	1-		
1435.11 5	1-#		
1457.46 8	(2^{-})		
1501.0 <i>3</i>	(1)		
1553.69 6	(1)		
1570.61 4	1+@		
1592.38 6	(1)		
1601.81 4	1+		
1667.4 4	(1^{-})		
1693.8? 6	(1^{-})		
1781.27 8	$(0^+,1)$		
1796.4 ^{&} 6	(1)		
1809.00 7	(1^{-})		
1863.15 7	(1)		
18/4.88 7	(1)		
1911.10 5	(1)		
1936.76 7	(1)		
1909.9 3	(1)		

[†] Deduced by evaluators from a least-squares fit to γ -ray energies.

[‡] From Adopted Levels.

[#] K=1⁻: $\nu\nu$ 7/2[743],5/2[633] state. [@] K=1: $\pi\pi$ 3/2[651],5/2[642] state. [&] If the 338.1 γ to (2⁻) state is E1, then J^{π}(1796 level)=(1⁺).

²³⁴Pa β^- decay (1.159 min) 1975Ar23,1990Sc09 (continued)

²³⁴U Levels (continued)

- ^{*a*} Band(A): $K^{\pi}=0^+$ g.s. band.
- ^{*b*} Band(B): $K^{\pi}=0^{-}$ octupole-vibrational band.
- ^{*c*} Band(C): $K^{\pi}=0^+$ collective band.
- ^{*d*} Band(D): $K^{\pi}=2^+ \gamma$ -vibrational band.
- ^{*e*} Band(E): $K^{\pi}=2^{-}$ octupole-vibrational band.
- ^{*f*} Band(F): $K^{\pi}=0^+$ band.
- ^g Band(G): $K^{\pi}=2^+$ band.
- ^{*h*} Band(H): $K^{\pi} = (0^{-})$ band.

β^- radiations

 β measurements:

1953	<mark>St36</mark> ;s	1955De40;s, βγ	1963Bj02;s,βγ
Εβ	Ιβ	Εβ	Εβ Ιβ
580	1%	600	1250 30
1500	9%	1500	1530 50
2305	90%	2300	2290 20 98%

Others: 1954Jo19, 1959Sc31.

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
(299 4)	1969.9	0.0039 2	6.8	av E β =83.0 13
(332 4)	1936.76	0.0097 3	6.6	av $E\beta = 93.0 \ 13$
(358 4)	1911.10	0.0508 8	6.0	av $E\beta = 101.0 \ I3$
(394 4)	1874.88	0.0256 3	6.4	av $E\beta = 112.3 \ I3$
(406 4)	1863.15	0.0032 4	7.4	av $E\beta = 116.0 \ I3$
(460 4)	1809.00	0.0149 4	6.9	av $E\beta = 133.3 \ I3$
(473 4)	1796.4	0.0022 3	7.7	av E β =137.4 14
(488 4)	1781.27	0.0355 8	6.6	av Eβ=142.3 <i>14</i>
(575 4)	1693.8?	0.0025 4	8.0	av Eβ=171.2 <i>14</i>
(602 4)	1667.4	0.0061 5	7.6	av Eβ=180.1 14
(667 4)	1601.81	0.00126 23	8.5	av E β =202.5 14
(677 4)	1592.38	0.0233 18	7.2	av E β =205.8 14
(698 [#] 4)	1570.61	0.00194 21	8.4	av E β =213.3 14
(715 4)	1553.69	0.0321 6	7.2	av $E\beta = 219.2 \ 14$
(768 4)	1501.0	0.0127 6	7.7	av $E\beta = 237.6 \ 15$
(834 4)	1435.11	0.0097 4	7.9	av $E\beta = 261.1 \ 15$
(1032 4)	1237.35	0.0109 7	8.2	av $E\beta = 333.1 \ 15$
(1095 4)	1174.1	0.0045 <i>3</i>	8.7	av E β =356.7 15
(1143 4)	1126.37	0.0043 4	9.4^{1u}	av E β =361.0 15
(1224 4)	1044.539	1.002 13	6.5	av E β =405.6 16
(1280 [#] 4)	989.389	0.009 3	8.6	av E β =426.7 16
(1459 4)	809.96	0.948 13	6.8	av E β =496.0 16
(1483 4)	786.312	0.059 4	8.0	av $E\beta = 505.3 \ 16$
2290 20	0.0	97.57 4	5.5	av E β =820.5 17

[†] Deduced from intensity balance at each level.

[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

²³⁴Pa β^- decay (1.159 min) 1975Ar23,1990Sc09 (continued)

$\gamma(^{234}{\rm U})$

I γ normalization: The absolute intensities of photons from ²³⁴Pa β^- decay were measured in equilibrium with its parents, ²³⁴Th and ²³⁸U, by various groups. The absolute intensity of I γ (1001 γ)=0.843% 8 per 100 1.17-min ²³⁴Pa β^- decays has been adopted and used to normalize the decay scheme in this evaluation. This value is a weighted average (χ^2/ν =4.6) of the following absolute γ -ray intensities: I γ (1001 γ)=0.828% 18 (1971GuZY)(evaluators increased its uncertainty by 2% because the original value included only the statistical component). 0.834% 7 (1986Mo09); 0.839% 5 (1990Sc09); 0.788% 43 (1992Li02); 0.845% 21 (1992Si17); 0.818% 30 (1992Ja17); 0.910% 25 (1993Su37); 0.924% 17 (1999An40); 0.861% 15 (2003Yu06). Other recommended evaluated absolute intensities are: 0.839% 12 (1994Ak05, 1994Du15); 0.835% 11 (1998Ad08); 0.835% 4 (1999Nz01). Other: 1963Bj02. The experimentally deduced average radiation energy of 2258.8 keV 24 agrees well with 2265.3 keV 40 from the most recent mass adjustment (2003Au03) suggesting that the decay scheme is consistent and complete. $\beta\gamma$: 1963Bj02, 1955De40.

γγ, *γ*ce: see 1975Ar23, 1963Bj02.

Additional information 3.

 $\gamma\gamma(\theta)$: 1960Wo05.

M(N,M,O) From 234 Np ε decay.

E(S,R,M) Transition was not observed in 1.17-min 234 Pa β^- decay. Energy is from "Adopted Levels, gammas".

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger C}$	E_i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. [#]	α^d	Comments
(41.82) 43.498 <i>1</i>		851.75 43.4978	2+ 2+	809.96 0.0	$0^+ 0^+$	E2	713 19	Additional information 11. $\alpha(L)=520 \ 14; \ \alpha(M)=143 \ 4; \ \alpha(N+)=49.3 \ 14$ $\alpha(N)=38.9 \ 11; \ \alpha(O)=8.91 \ 24; \ \alpha(P)=1.44 \ 4; \ \alpha(Q)=0.00339 \ 9$ $E_{\gamma}: From^{238}Pu \ \alpha \ decay.$
						P_		Ice(L2)=250; L2:L3:M=25:27:34 (1963Bj02). Additional information 7.
(62.70 1)	1.4 5	989.389	2-	926.688	2+	E1 ^{&}	0.426	α (L)=0.320 5; α (M)=0.0791 11; α (N+)=0.0266 4 α (N)=0.0209 3; α (O)=0.00481 7; α (P)=0.000795 12; α (Q)=3.22×10 ⁻⁵ 5
(99.9)		143.24	4+	43.4978	2+	E2	13.42	<i>I</i> _γ : Deduced by evaluators from the ratios of <i>I</i> γ(62.70γ)/ <i>I</i> γ(203γ)=1.5 4/1.19 <i>I</i> 0 and <i>I</i> γ(62.70γ)/ <i>I</i> γ(946γ)=1.5 4/13.0 8, in ²³⁴ Pa g.s. β^- decay. α (L)=9.77 <i>I</i> 4; α (M)=2.71 4; α (N+)=0.933 <i>I</i> 3 α (N)=0.736 <i>I</i> 1; α (O)=0.1691 24; α (P)=0.0277 4; α (Q)=0.0001099 <i>I</i> 6 Additional information 8.
(135.32 8)	0.0051 6	1570.61	1+	1435.11	1-	[E1]	0.247	Mult.: From ²³⁴ Pa g.s. decay. $\alpha(K)=0.190 \ 3; \ \alpha(L)=0.0428 \ 6; \ \alpha(M)=0.01043 \ 15; \ \alpha(N+)=0.00355 \ 5$ $\alpha(N)=0.00278 \ 4; \ \alpha(O)=0.000653 \ 10; \ \alpha(P)=0.0001156 \ 17; \ \alpha(Q)=6.07\times10^{-6} \ 9$
(137.23 5)	0.056 22	1126.37	2+	989.389	2-	[E1]	0.239	I _γ : Deduced from Iγ(135γ)/Iγ(1527γ)= 0.20 2/112 5 in ²³⁴ Np ε decay. $\alpha(K)=0.184$ 3; $\alpha(L)=0.0413$ 6; $\alpha(M)=0.01006$ 15; $\alpha(N+)=0.00343$ 5 $\alpha(N)=0.00268$ 4; $\alpha(O)=0.000630$ 9; $\alpha(P)=0.0001116$ 16; $\alpha(Q)=5.88\times10^{-6}$ 9 I _γ : Deduced from Iγ(137.23γ)/Iγ(1082γ)=2.6 8/49 3, measured in ²³⁴ Pa g.s. decay.

L					²³⁴ Pa /	β ⁻ d	lecay (1.159 min)	1975 A	xr23,1990Sc0	9 (continued)
							γ (²³⁴ U) (contin	ued)	
	E_{γ}^{\dagger}	Ι _γ ‡ <i>с</i>	E _i (level)	\mathbf{J}_i^{π}	E_f J	f^{π}	Mult. [#]	δ	α^{d}	Comments
	140.1 10	1.52 17	989.389	2-	849.23 3	3-	M1+E2&	1.2 6	5.3 18	$ \begin{array}{c} \hline \alpha(\mathrm{K})=2.9 \ 22; \ \alpha(\mathrm{L})=1.76 \ 25; \ \alpha(\mathrm{M})=0.47 \ 9; \ \alpha(\mathrm{N}+)=0.16 \ 3 \\ \alpha(\mathrm{N})=0.127 \ 23; \ \alpha(\mathrm{O})=0.030 \ 5; \ \alpha(\mathrm{P})=0.0051 \ 7; \ \alpha(\mathrm{Q})=0.00015 \\ 10 \end{array} $
	(166.5 <i>1</i>)	0.00029 8	1601.81	1+	1435.11 1	[-	[E1]		0.1514	Iγ=0.42 10 is expected from Iγ(140γ)/Iγ(203γ) =49 5/119 10, Iγ=0.37 6 from Iγ(140γ)/Iγ(945γ) =0.49 5/13.0 8, measured in ²³⁴ Pa g.s. decay. α (K)=0.1179 17; α (L)=0.0253 4; α (M)=0.00613 9; α (N+)=0.00210 3 α (N)=0.001636 23; α (O)=0.000386 6; α (P)=6.92×10 ⁻⁵ 10; α (Q)=3.85×10 ⁻⁶ 6 I _γ : Deduced from Iγ(166.5γ)/Iγ(1558γ)=0.6 1/1872 20 in ²³⁴ Np s decay
	184.7 <i>5</i> 193.4 ^e 8	2.0 2 0.85 ^e 17	1174.1 1044.539	$(1,2^+)$ 0^+	989.389 2 851.75 2	2^{-} 2^{+}	[E2]		0.847 18	$\alpha(K)=0.163 \ 3; \ \alpha(L)=0.499 \ 12; \ \alpha(M)=0.138 \ 4; \ \alpha(N+)=0.0474$
	193.4 ^e 8	0.85 ^e 17	1237.35	1-	1044.539 0)+	[E1]		0.1065 <i>19</i>	11 $\alpha(N)=0.0374 \ 9; \ \alpha(O)=0.00862 \ 20; \ \alpha(P)=0.00144 \ 4; \ \alpha(Q)=1.371\times10^{-5} \ 25$ Additional information 13. $\alpha(K)=0.0835 \ 15; \ \alpha(L)=0.0174 \ 3; \ \alpha(M)=0.00421 \ 8; \ \alpha(N+)=0.00144 \ 3$ $\alpha(N)=0.001123 \ 20; \ \alpha(O)=0.000266 \ 5; \ \alpha(P)=4.81\times10^{-5} \ 9; \ \alpha(Q)=2.78\times10^{-6} \ 5$
	(197.91 <i>15</i>)	0.032 8	1435.11	1-	1237.35 1	[-	[M1,E2]		2.0 12	Additional information 18. $\alpha(K)=1.3 \ 12; \ \alpha(L)=0.473 \ 22; \ \alpha(M)=0.122 \ 4; \ \alpha(N+)=0.0423 \ 9$ $\alpha(N)=0.0330 \ 10; \ \alpha(O)=0.00782 \ 12; \ \alpha(P)=0.00141 \ 11; \ \alpha(Q)=7.E-5 \ 6$ I_{γ} : Deduced from $I_{\gamma}(197.9\gamma)/I_{\gamma}(1434.13\gamma)=0.018 \ 4/6.38 \ 25$
	199.9 <i>10</i>	0.68 <i>13</i>	1126.37	2+	926.688 2	2+	(E0+E2+M1) ^{&}			in ²³⁴ Np ε decay. ce(K)/(γ +ce)=0.45 22; ce(L)/(γ +ce)=0.16 7; ce(M)/(γ +ce)=0.040 17; ce(N+)/(γ +ce)=0.014 6 ce(N)/(γ +ce)=0.011 5; ce(O)/(γ +ce)=0.0026 11; ce(P)/(γ +ce)=0.00046 19; ce(Q)/(γ +ce)=2.2×10 ⁻⁵ 20 I γ (199.9 γ)/I γ (1082 γ)=0.14 5 from 6.75-h ²³⁴ Pa β^- decay, 0.64 20 here. Use of the ratio from 6.75-h ²³⁴ Pa decay yields I γ (199.9 γ)=0.12 5. Since accuracy and correctness of a conversion coefficient rely on the measured I γ and Ice values, because of the uncertainty on I γ 's, no conversion coefficient has been adopted, and I(γ +ce)≈5% [deduced from Ti(199.9 γ)/I γ (1082 γ)≈5.9 in ²³⁴ Pa g.s. decay data] has been used for obtaining the I β value.
	203.3 8	2.0 5	989.389	2-	786.312 1	[-	M1+E2 ^{&}	1.5 4	1.4 4	$\alpha(K)=0.8$ 4; $\alpha(L)=0.420$ 12; $\alpha(M)=0.1109$ 23; $\alpha(N+)=0.0384$ 8

From ENSDF

 $^{234}_{92}\mathrm{U}_{142}\text{--}4$

234 Pa β^{-} decay (1.159 min) 1975Ar23,1990Sc09 (continued) γ ⁽²³⁴U) (continued) Mult.# α^{d} E_{γ}^{\dagger} $I_{\nu}^{\ddagger c}$ E_i (level) J_{f}^{π} Comments E_f α (N)=0.0300 7; α (O)=0.00705 16; α (P)=0.00124 5; α (O)=4.3×10⁻⁵ 15 209.9 4 $(0^+, 1)$ 1+ 1.6 2 1781.27 1570.61 $I_{(\gamma+ce)}$: I($\gamma+ce$) $\approx 0.8\%$, from Ti(233.6 γ)/I γ (1042 γ) ≈ 0.7 , deduced in ²³⁴Np ε (233.62)1085.11 2^{+} 851.75 2+ decay. (235.93)0.10 5 1085.11 2^{+} 849.23 3-[E1] 0.0673 $\alpha(K)=0.0532$ 8; $\alpha(L)=0.01067$ 16; $\alpha(M)=0.00258$ 4; $\alpha(N+..)=0.000885$ 13 $\alpha(N)=0.000689 \ 10; \ \alpha(O)=0.0001639 \ 24; \ \alpha(P)=2.99\times 10^{-5} \ 5; \ \alpha(O)=1.82\times 10^{-6} \ 3$ I_{γ} : deduced by evaluators from branching of $I_{\gamma}(235.9\gamma)/I_{\gamma}(942\gamma)=0.034$ 13, adopted from measurements in ²³⁸Pu α decay and ²³⁴Np ε decay. 236 1 1044.539 0+ 809.96 0⁺ E0 $ce(K)/(\gamma+ce)=0.80; ce(L)/(\gamma+ce)=0.15$ E_{γ} : measured by 1963Bi02 (s ce). $E_{\gamma}=234.62$ was measured in ²³⁴Np decay. Total Ice=87 9 from measured Ice(K)=70 and K/L=70/13. x243.5 8 0.59 10 $\alpha(K)=0.77; \alpha(L)=0.225; \alpha(M)=0.0568; \alpha(N+..)=0.0193$ 247.7 8 0.29 2 1237.35 1-989.389 2-[M1.E2] 1.07 α (N)=0.0151 20; α (O)=0.0036 6; α (P)=0.00066 15; α (Q)=4.E-5 3 I_{γ} : Deduced by the evaluators from $I_{\gamma}(247.79\gamma)/I_{\gamma}(1193.77\gamma)=0.109\ 7/6.02\ 24$ in ²³⁴Np ε decay. I γ =1.14 25 was measured by 1975Ar23. The I(247.7 γ) measured in 1.17-min 234 Pa β^{-} decay may possibly include contribution from another source. 258.227 3 90.8^{a} 24 1044.539 0^{+} 786.312 1-(E1) 0.0548 α (K)=0.0434 7; α (L)=0.00859 12; α (M)=0.00207 3; α (N+..)=0.000712 10 $\alpha(N)=0.000555 8$; $\alpha(O)=0.0001321 19$; $\alpha(P)=2.42\times10^{-5} 4$; $\alpha(O)=1.499\times10^{-6}$ 21 E_{γ} , I_{γ} : From 2000Ni13. Other intensity results: $I_{\gamma}=97.4$ (1975Ar23), $I_{\gamma}=87.2$ $(1971GuZQ), I\gamma = 87.4 (1986Mo09).$ Ice(K) < 5 (not observed). @B@0@0@@@@@B@0@1@@@@@14 80.9 33 (1975Ar23). 275.5 8 0.37 7 1126.37 2^{+} 851.75 2+ [M1,E2] 0.8 6 $\alpha(K)=0.55; \alpha(L)=0.164; \alpha(M)=0.0398; \alpha(N+..)=0.0143$ $\alpha(N)=0.0106\ 21;\ \alpha(O)=0.0025\ 6;\ \alpha(P)=0.00047\ 13;\ \alpha(O)=2.7\times10^{-5}\ 21$ α (K)=0.0315 5; α (L)=0.00608 10; α (M)=0.001467 24; α (N+..)=0.000504 8 299.0 10 0.77 16 1085.11 2^{+} 786.312 1 [E1] 0.0395 7 $\alpha(N)=0.000392$ 7; $\alpha(O)=9.37\times10^{-5}$ 15; $\alpha(P)=1.73\times10^{-5}$ 3; $\alpha(O)=1.105\times10^{-6}$ 18 I_γ: I_γ(299γ)/I_γ(942γ)=0.10 3 from ²³⁸Pu α decay, 0.085 10 from ²³⁴Np ε decay, 0.30 13 from 6.75-h 234 Pa β^- decay, and 0.26 6 here. The adopted ratio of 0.10 3 yields $I_{\gamma}(299.0\gamma)=0.25$ 8. 311.0 10 1237.35 1^{-} 926.688 2+ [E1] $\alpha(K)=0.0289$ 5; $\alpha(L)=0.00556$ 9; $\alpha(M)=0.001339$ 22; $\alpha(N+..)=0.000460$ 8 0.10 1 0.0363 6 $\alpha(N)=0.000358\ 6$; $\alpha(O)=8.55\times10^{-5}\ 14$; $\alpha(P)=1.579\times10^{-5}\ 25$; $\alpha(Q) = 1.019 \times 10^{-6}$ 16 I_{γ} : Deduced from $I_{\gamma}(310.52\gamma)/I_{\gamma}(1193.77\gamma) = 0.039 \ 4/6.02 \ 24 \ in \ ^{234}Np \ \varepsilon$ decay. $I_{\gamma}(311\gamma)=0.61$ 12 was measured by 1975Ar23. The I(311.0 γ) measured in 1.17-min ²³⁴Pa β^{-} decay may possibly include contribution from another source. E_{γ}: E γ =310.52 *10* from ²³⁴Np ε decay. 0.1597 $\alpha(K)=0.0677 \ 10; \ \alpha(L)=0.0674 \ 10; \ \alpha(M)=0.0182 \ 3; \ \alpha(N+..)=0.00629 \ 9$ (316.7 1) 0.22 6 1126.37 2^{+} 809.96 0+ [E2]

S

 $^{234}_{92}\mathrm{U}_{142}\text{--}5$

				²³⁴ P	234 Pa β^{-} decay (1.159 min)			1975Ar23,19	990Sc09 (continued)
							γ (²³⁴ U)	(continued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [#]	δ	α^{d}	Comments
					<u> </u>				α (N)=0.00494 7; α (O)=0.001150 17; α (P)=0.000197 3; α (Q)=4.01×10 ⁻⁶ 6 I _{γ} : Deduced by evaluators from I γ (3167 γ)/I γ (1082 γ)=10 1/49 3 in ²³⁴ Pa g.s. decay.
338.1 8	1.3 3	1796.4	(1)	1457.46	(2 ⁻)				The intensity imbalance at the 1457-keV level (I β =-0.0014 6)
(340.2 1)	0.08 4	1126.37	2+	786.312	1-	[E1]		0.0298	$\alpha(K)=0.0239 \ 4; \ \alpha(L)=0.00453 \ 7; \ \alpha(M)=0.001090 \ 16; \ \alpha(N+)=0.000375 \ 6$
									α (N)=0.000292 4; α (O)=6.97×10 ⁻⁵ 10; α (P)=1.292×10 ⁻⁵ 19; α (Q)=8.49×10 ⁻⁷ 12
									I _γ : Deduced from I _γ (340.1γ)/I _γ (1082γ)=3.9 8/49 3 in ²³⁴ Pa g.s. $β^-$ decay
357.5 <i>10</i> 362.8 <i>10</i>	0.95 <i>20</i> 0.81 <i>17</i>	1911.10 1796.4	(1^{-}) (1)	1553.69 1435.11	(1) 1 ⁻				$\alpha(M1)=0.660, \ \alpha(E1)=0.0270, \ \alpha(E2)=0.1146.$ If the 338.1 γ , decaying to (2 ⁻) state is E1, then the 362.8 γ decaying to the 1 ⁻ state is also E1, with $\alpha=0.0262$.
387.6 ^f 8	1.1 ^{<i>f</i>} 1	1174.1	(1,2 ⁺)	786.312	1-				I_{γ} : 1.70 <i>17</i> was measured for this doubly placed γ . I_{γ} =0.465 <i>20</i> has been deduced by the evaluators for the 387.6 γ deexciting the 1237-keV level.
									α: if the 184.7γ (decays to 2 ⁻ state) is M1, then, $J^{\pi}(1174 \text{ level})=1^-$, and the 387.6γ (which decays to 1 ⁻ state) should be M1,E2. $\alpha(M1)=0.529$, $\alpha(E2)=0.0917$, $\alpha(E1)=0.0228$.
387.6 ^{<i>f</i>} 8	0.556 ^f 20	1237.35	1-	849.23	3-	[E2]		0.0899 14	$\alpha(K)=0.0463\ 7;\ \alpha(L)=0.0321\ 5;\ \alpha(M)=0.00858\ 14;\ \alpha(N+)=0.00296$
									α (N)=0.00232 4; α (O)=0.000543 9; α (P)=9.45×10 ⁻⁵ 15; α (Q)=2.54×10 ⁻⁶ 4
									E_{γ} : 387.94 6 was measured in ²³⁴ Np ε decay.
									234 Np ε decay.
(427.4 2)	0.024 6	1237.35	1-	809.96	0^+	[E1]		0.0185	$\alpha(K)=0.01488\ 21;\ \alpha(L)=0.00274\ 4;\ \alpha(M)=0.000657\ 10;$ $\alpha(N+)=0.000226\ 4$
									$\alpha(N)=0.0001758\ 25;\ \alpha(O)=4.22\times10^{-5}\ 6;\ \alpha(P)=7.88\times10^{-6}\ 11;$
									$\alpha(Q) = 5.40 \times 10^{-7} 8$
									Γ_{γ} : Deduced from $\Gamma_{\gamma}(427.4\gamma)/\Gamma_{\gamma}(1193.77\gamma) = 0.009/2/0.02/24$ in 234 Np ε decay.
(445.91 10)	0.036 8	1435.11	1-	989.389	2^{-}	[M1,E2]		0.20 14	$\alpha(K)=0.15\ 12;\ \alpha(L)=0.036\ 16;\ \alpha(M)=0.009\ 4;\ \alpha(N+)=0.0031\ 13$
									$\alpha(N)=0.0024 \ I0; \ \alpha(O)=0.00058 \ 25; \ \alpha(P)=0.00011 \ 5; \ \alpha(Q)=7.E-6 \ 6$ I _v : Deduced from Iv(445.9v)/Iv(1434.13v)=0.020 4/6.38 25 in
									234 Np ε decay.
450.97 10	3.70 ^{<i>a</i>} 17	1237.35	1-	786.312	1-	M1+E2	0.70	0.241	α (K)=0.187 3; α (L)=0.0400 6; α (M)=0.00979 14; α (N+)=0.00341 5 α (N)=0.00264 4; α (O)=0.000638 9; α (P)=0.0001213 17; α (Q)=8.79×10 ⁻⁶ 13 Additional information 19
									Automat mitorination 17.

							$\gamma(^{234}\text{U})$ (co	ntinued)
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{d}	Comments
453.58 10	2.53 ^{<i>a</i>} 14	1911.10	(1 ⁻)	1457.46	(2 ⁻)	[M1]	0.324	$\alpha(K)=0.258 \ 4; \ \alpha(L)=0.0495 \ 7; \ \alpha(M)=0.01193 \ 17; \ \alpha(N+)=0.00416 \ 6 \ \alpha(N)=0.00321 \ 5; \ \alpha(O)=0.000781 \ 11; \ \alpha(P)=0.0001507 \ 22; \ \alpha(Q)=1.201\times10^{-5} \ 1200000000000000000000000000000000000$
456.7 10	0.85 17	1693.8?	(1-)	1237.35	1-	[M1]	0.318	Additional information 50. $\alpha(K)=0.253 \ 4; \ \alpha(L)=0.0485 \ 8; \ \alpha(M)=0.01171 \ 18; \ \alpha(N+)=0.00408 \ 7$ $\alpha(N)=0.00315 \ 5; \ \alpha(Q)=0.000767 \ 12; \ \alpha(P)=0.0001479 \ 23; \ \alpha(Q)=1.179 \times 10^{-5} \ 18$
468.43 10	2.72 ^a 17	1553.69	(1)	1085.11	2^{+}			Additional information 23.
475.74 10	2.84 ^{<i>a</i>} 17	1911.10	(1 ⁻)	1435.11	1-	[M1]	0.285	$\alpha(K)=0.227 4; \alpha(L)=0.0434 6; \alpha(M)=0.01048 15; \alpha(N+)=0.00365 6$ $\alpha(N)=0.00282 4; \alpha(O)=0.000686 10; \alpha(P)=0.0001323 19; \alpha(Q)=1.055\times10^{-5} 12$ Additional information 37
(485.44 7)	0.0226 23	1570.61	1+	1085.11	2+	[M1,E2]	0.16 11	$\alpha(K)=0.12 \ 10; \ \alpha(L)=0.028 \ 13; \ \alpha(M)=0.007 \ 3; \ \alpha(N+)=0.0024 \ 11 \ \alpha(N)=0.0019 \ 8; \ \alpha(O)=0.00045 \ 20; \ \alpha(P)=8.E-5 \ 4; \ \alpha(Q)=6.E-6 \ 5 \ L : Deduced from 12((852))(b((1527))=0.89 \ 7(112 \ 5 \ in \ ^{234}Nn \ c \ decay$
507.5 10	1.87 17	1592.38	(1)	1085.11	2^{+}			r_{γ} . Deduced from $r_{\gamma}(405\gamma)/r_{\gamma}(1527\gamma) = 0.0577/112.5 \text{ m}$. Ap 2 decay.
509.2 8	2.5 3	1553.69	(1)	1044.539	0^+			
(516.60 6)	0.016 4	1601.81	1+	1085.11	2+	(M1)	0.228	$\alpha(K)=0.182 \ 3; \ \alpha(L)=0.0347 \ 5; \ \alpha(M)=0.00837 \ 12; \ \alpha(N+)=0.00292 \ 4$ $\alpha(N)=0.00226 \ 4; \ \alpha(O)=0.000548 \ 8; \ \alpha(P)=0.0001058 \ 15; \ \alpha(Q)=8.44\times10^{-6} \ 12$ L . Deduced from $I_{2}(516x)/I_{2}(1558x)=212, \ 10/1872, \ 20$ in $2^{34}N_{2}$ or decay
(526.02 10)	0.011 2	1570.61	1+	1044.539	0^+	[M1]	0.217	$\alpha(K)=0.1732\ 25;\ \alpha(L)=0.0331\ 5;\ \alpha(M)=0.00797\ 12;\ \alpha(N+)=0.00278\ 4$ $\alpha(N)=0.00215\ 3;\ \alpha(O)=0.000522\ 8;\ \alpha(P)=0.0001007\ 15;\ \alpha(Q)=8.04\times10^{-6}\ 12$ L : Deduced from $\alpha(526\alpha)/\alpha(1527\alpha)=0.43\ 5/112\ 5\ in\ ^{234}Nn\ c\ decay$
543.98 10	4.36 19	1781.27	$(0^+, 1)$	1237.35	1-		0.11 10	r_{γ} . Deduced from $r_{\gamma}(520\gamma)/r_{\gamma}(1527\gamma) = 0.435/r_{12}5$ m $r_{\gamma}p$ ϵ decay. Additional information 29.
(557.24 6)	0.010 2	1601.81	1+	1044.539	0+	(M1)	0.186	$\alpha(K)=0.1485\ 21;\ \alpha(L)=0.0283\ 4;\ \alpha(M)=0.00682\ 10;\ \alpha(N+)=0.00238\ 4$ $\alpha(N)=0.00184\ 3;\ \alpha(O)=0.000447\ 7;\ \alpha(P)=8.62\times10^{-5}\ 12;\ \alpha(Q)=6.88\times10^{-6}\ 10$ I _Y : Deduced from I _Y (557 _Y)/I _Y (1558 _Y)=21.4\ 13/1872\ 20 in ²³⁴ Np ε decay.
x557.3 10	0.85 17							
572.0 10	1.03 2	1809.00	(1 ⁻)	1237.35	1-	[M1]	0.173	$\alpha(K)=0.1384\ 21;\ \alpha(L)=0.0264\ 4;\ \alpha(M)=0.00636\ 10;\ \alpha(N+)=0.00221\ 4$
(581.19 10)	0.097 12	1570.61	1^{+}	989.389	2-	[E1]	0.01006	$ \begin{array}{l} \alpha(\mathrm{N}) = 0.001713; \ \alpha(\mathrm{O}) = 0.0004167; \ \alpha(\mathrm{P}) = 8.03 \times 10^{-5}12; \ \alpha(\mathrm{Q}) = 6.41 \times 10^{-5}10 \\ \alpha(\mathrm{K}) = 0.00815 12; \ \alpha(\mathrm{L}) = 0.001445 21; \ \alpha(\mathrm{M}) = 0.000345 5; \ \alpha(\mathrm{N}+) = 0.0001192 \\ 17 \end{array} $
								α (N)=9.24×10 ⁻⁵ <i>13</i> ; α (O)=2.23×10 ⁻⁵ <i>4</i> ; α (P)=4.20×10 ⁻⁶ <i>6</i> ; α (Q)=3.03×10 ⁻⁷ 5
624.6 10	0.137 15	1435.11	1-	809.96	0^{+}	[E1]	0.00877	I _γ : Deduced from I _γ (581γ)/I _γ (1527γ)= 3.8 4/112 5 in ²³⁴ Np ε decay. α (K)=0.00712 11; α (L)=0.001252 18; α (M)=0.000299 5; α (N+)=0.0001032
								$\alpha(N)=8.00\times10^{-5}$ 12; $\alpha(O)=1.93\times10^{-5}$ 3; $\alpha(P)=3.64\times10^{-6}$ 6; $\alpha(Q)=2.66\times10^{-7}$ 4
								I _γ : 1.42 <i>15</i> listed by 1975Ar23 is assumed by the evaluators to be in error: the ratio of I _γ (625γ)/I _γ (1434γ)=0.0119 <i>12</i> from I _γ 's measured in ²³⁴ Np ε decay does not agree with the ratio that one obtains in 1.17-min ²³⁴ Pa β ⁻ decay, if I _γ (625γ)=1.42 <i>5</i> . The ratio observed in ²³⁴ Np ε decay is adopted,

 \neg

²³⁴₉₂U₁₄₂-7

	234 Pa β^- decay (1.159 min) 1975Ar23,1990Sc09 (continued)													
						$\gamma(2)$	³⁴ U) (contin	ued)						
${\rm E_{\gamma}}^\dagger$	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α^{d}	Comments						
649.0 ^{<i>f</i>} 10	0.049 <i>f</i> 10	1435.11	1-	786.312	1-	[M1,E2]	0.08 5	$\alpha(K)=0.06\ 4;\ \alpha(L)=0.012\ 7;\ \alpha(M)=0.0031\ 15;\ \alpha(N+)=0.0011\ 6$ $\alpha(N)=0.0008\ 4;\ \alpha(O)=0.00020\ 10;\ \alpha(P)=3.8\times10^{-5}\ 20;\ \alpha(Q)=2.7\times10^{-6}\ 19$ $I_{\gamma}:\ 1.06\ 22$ was measured for this doubly-placed γ . The total I γ is divided by the evaluators such that the I $\gamma(649\gamma)/I\gamma(1434\gamma)$ ratio from the 1435-keV level and the I $\gamma(649\gamma)/I\gamma(691\gamma)$ ratio from the 1500-keV level agree with those in 234 Np ε decay.						
649.0 ^f 10	1.2^{f} 3	1501.0	(1)	851.75	2+									
655.3 10	1.64 17	1781.27	$(0^+,1)$	1126.37	2+		0.068 60							
670.8 10	0.44 10	1457.46	(2^{-})	786.312	1-	[M1,E2]	0.07 5	$\alpha(K) = 0.054; \alpha(L) = 0.0116; \alpha(M) = 0.002814; \alpha(N+) = 0.00105$						
673 0 10	0 77 16	1011 10	(1-)	1227 35	1-	[M1]		$\alpha(N)=0.0008 4; \ \alpha(O)=0.00018 9; \ \alpha(P)=3.5\times10^{-5} 18; \ \alpha(Q)=2.5\times10^{-5} 17$						
683.4 <i>10</i>	0.68 13	1809.00	(1^{-})	1126.37	2^{+}	[E1]	0.00741	α (K)=0.00603 9; α (L)=0.001050 15; α (M)=0.000250 4; α (N+)=8.65×10 ⁻⁵ 13						
								$\alpha(N)=6.70\times10^{-5} \ 10; \ \alpha(O)=1.618\times10^{-5} \ 24; \ \alpha(P)=3.06\times10^{-6} \ 5; \ \alpha(Q)=2.26\times10^{-7} \ 4$						
691.0 <i>3</i>	10.6 2	1501.0	(1)	809.96	0^{+}									
695.5 10	1.93 16	1781.27	$(0^{+},1)$	1085.11	2+		0.059 52	Additional information 30.						
699.02 <i>10</i>	6.83	1936.76	(1)	1237.35	1 2+			Additional information 24						
702.00 10	8.0° 2 6.7.4	849 23	(1)	031.73 143.24	$\frac{2}{4^+}$	[F1]	0.00698	$\alpha(K) = 0.00568 \ 8 \ \alpha(L) = 0.000987 \ 14 \ \alpha(M) = 0.000235 \ 4$						
105.74 12	0.7 4	047.25	5	143.24	т		0.00070	$\alpha(\mathbf{N}_{\perp}) = 8.12 \times 10^{-5} 12$						
								$\alpha(N) = 6.12 \times 10^{-5} \ 9 \ \alpha(O) = 1.519 \times 10^{-5} \ 22 \ \alpha(P) = 2.88 \times 10^{-6} \ 4$						
								$\alpha(0)=2.13\times10^{-7}$ 3						
708.2 10	0.8	851.75	2+	143.24	4+	[E2]	0.0219	$\alpha(\mathbf{K}) = 0.01537\ 22;\ \alpha(\mathbf{L}) = 0.00489\ 7;\ \alpha(\mathbf{M}) = 0.001247\ 19;$						
								α(N+)=0.000432 7						
								α (N)=0.000337 5; α (O)=8.00×10 ⁻⁵ 12; α (P)=1.458×10 ⁻⁵ 22;						
								$\alpha(Q) = 7.28 \times 10^{-7} 11$						
(719.01 7)	0.031 4	1570.61	1+	851.75	2^{+}	[M1+E2]	0.06 4	$\alpha(K)=0.05 \ 3; \ \alpha(L)=0.009 \ 5; \ \alpha(M)=0.0023 \ 12; \ \alpha(N+)=0.0008 \ 4$						
								$\alpha(N)=0.0006\ 3;\ \alpha(O)=0.00015\ 8;\ \alpha(P)=2.9\times10^{-5}\ 15;\ \alpha(Q)=2.1\times10^{-6}\ 14$						
722 5 10	1 5 4 17	1060.0	(1-)	1007.05	1-			I_{γ} : Deduced from $I_{\gamma}(720\gamma)/I_{\gamma}(1527\gamma) = 1.227/112.5 \text{ in } ^{254}\text{Np }\varepsilon$ decay.						
732.5 10	1.54 I/ 13a 2	1909.9	(1)	851 75	$\frac{1}{2^+}$			Additional information 27						
742.813.5	126.6.24	786.312	1-	43,4978	$\frac{2}{2^{+}}$	E1	0.00636	$\alpha(K) = 0.00518 \ 8; \ \alpha(L) = 0.000895 \ 13; \ \alpha(M) = 0.000213 \ 3;$						
742.013 3	120.0 24	100.312	I	-5770	2		0.00030	$\alpha(N)=0.00316$ 6, $\alpha(D)=0.000395$ 15, $\alpha(M)=0.000215$ 5, $\alpha(N)=5.71\times10^{-5}$ 11 $\alpha(N)=5.71\times10^{-5}$ 8; $\alpha(O)=1.378\times10^{-5}$ 20; $\alpha(P)=2.61\times10^{-6}$ 4; $\alpha(Q)=1.95\times10^{-7}$ 3 E_{γ},I_{γ} : From 2000Ni13. Other intensity results: $I_{\gamma}=95.8$ 4 (1975Ar23), $I_{\gamma}=106.6$ 24 (1971GuZQ), $I_{\gamma}=117$ 2 (1986Mo09). E_{γ} : From 1972Sa06.						
(750.12 6)	0.021 5	1601.81	1^{+}	851.75	2^{+}	(M1)	0.0841	$\alpha(K) = 0.0672 \ 10; \ \alpha(L) = 0.01272 \ 18; \ \alpha(M) = 0.00306 \ 5; \ \alpha(N+) = 0.001067$						
						. /								

From ENSDF

				²³⁴ Pa	β [−] de	cay (1.159	0 min) 1	975Ar23,1990Sc09 (continued)
							γ ⁽²³⁴ U) (co	ontinued)
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. [#]	α^{d}	Comments
					<u> </u>			<i>15</i> $\alpha(N)=0.000825 \ I2; \ \alpha(O)=0.000201 \ 3; \ \alpha(P)=3.87\times10^{-5} \ 6; \ \alpha(Q)=3.09\times10^{-6} \ 5$ I _{\gamma} : Deduced by the evaluators from I _γ (750.7 _γ)/I _γ (1558 _γ)=44.0 26/1872 20 in ²³⁴ Np ε decay.
^x 760.3 <i>10</i> (760.53 <i>15</i>)	1.87 <i>17</i> 0.0051 <i>11</i>	1570.61	1+	809.96	0^+	[M1]	0.0811	α (K)=0.0648 9; α (L)=0.01226 18; α (M)=0.00295 5; α (N+)=0.001029 15 α (N)=0.000795 12; α (O)=0.000193 3; α (P)=3.73×10 ⁻⁵ 6; α (Q)=2.98×10 ⁻⁶ 5
766.42 10	377 4	809.96	0+	43.4978	2+	(E2)	0.0187	Deduced from $I\gamma(760\gamma)/I\gamma(1527\gamma) = 0.20 \ 4/112 \ 5 \ in \ ^{234}Np \ \varepsilon \ decay.$ $\alpha(K)=0.01336 \ 19; \ \alpha(L)=0.00396 \ 6; \ \alpha(M)=0.001003 \ 14; \ \alpha(N+)=0.000348 \ 5 \ \alpha(N)=0.000271 \ 4; \ \alpha(O)=6.45\times10^{-5} \ 9; \ \alpha(P)=1.182\times10^{-5} \ 17; \ \alpha(Q)=6.25\times10^{-7} \ 9 \ E_{\gamma}: From \ 1972Sa06.$
781.75 <i>10</i> (783.4 <i>1</i>)	9.23 ^{<i>a</i>} 22 0.046 <i>3</i>	1592.38 926.688	(1) 2 ⁺	809.96 143.24	0+ 4+	[E2]	0.0179	Additional information 9. Other measurements: $I\gamma$ =7.5 7 (1975Ar23), 7.2 <i>10</i> (1992Si17). $\alpha(K)$ =0.01285 <i>18</i> ; $\alpha(L)$ =0.00374 <i>6</i> ; $\alpha(M)$ =0.000946 <i>14</i> ; $\alpha(N+)$ =0.000328 5 $\alpha(N)$ =0.000255 <i>4</i> ; $\alpha(O)$ =6.08×10 ⁻⁵ <i>9</i> ; $\alpha(P)$ =1.116×10 ⁻⁵ <i>16</i> ; $\alpha(Q)$ =5.99×10 ⁻⁷ <i>9</i> I_{γ} : Deduced by evaluators from $I\gamma(783.4\gamma)/I\gamma(926.7\gamma)$ =0.29 <i>3</i> /9.3 <i>6</i> =0.031 <i>4</i>
786.28 10	64.6 8	786.312	1-	0.0	0+	(E1)	0.00573	in ²³⁴ Pa g.s. decay. $\alpha(K)=0.00467$ 7; $\alpha(L)=0.000804$ 12; $\alpha(M)=0.000191$ 3; $\alpha(N+)=6.61\times10^{-5}$ 10 $\alpha(N)=5.12\times10^{-5}$ 8; $\alpha(O)=1.237\times10^{-5}$ 18; $\alpha(P)=2.35\times10^{-6}$ 4; $\alpha(Q)=1.766\times10^{-7}$ 25
(791.94 5)	0.012 4	1601.81	1+	809.96	0+	[M1]	0.0728	E _γ : From 1972Sa06. Ice(K)<1 (not observed). α (K)=0.0582 9; α (L)=0.01100 16; α (M)=0.00265 4; α (N+)=0.000923 13 α (N)=0.000713 10; α (O)=0.0001735 25; α (P)=3.35×10 ⁻⁵ 5; α (Q)=2.68×10 ⁻⁶ 4 I _γ : Deduced by the evaluators from the ratios of I _γ (791.9 _γ)/I _γ (1558 _γ)=25.4
805.75 10	7.0 4	849.23	3-	43.4978	2+	[E1]	0.00549	<i>15/1872 20</i> in ²³⁴ Np ε decay. $\alpha(K)=0.00447$ 7; $\alpha(L)=0.000768$ <i>11</i> ; $\alpha(M)=0.000183$ 3; $\alpha(N+)=6.31\times10^{-5}$ 9 $\alpha(N)=4.89\times10^{-5}$ 7; $\alpha(O)=1.182\times10^{-5}$ <i>17</i> ; $\alpha(P)=2.25\times10^{-6}$ 4;
808.20 10	3.3 2	851.75	2+	43.4978	2+	E0+E2		$\alpha(Q)=1.693 \times 10^{-7} 24$ Ice(K)<20 (line questionable, 1963Bj02).
811		809.96	0+	0.0	0+	E0		<i>I</i> . deduced in ^(γ) (Np ε decay. $I_{(\gamma+ce)}: I(\gamma+ce)=850 \text{ from Ice}(811)/I\gamma(1001)=0.51/0.60=0.85 (1963Bj02).$ $E_{\gamma}: \text{ From 1963Bj02 (s ce). 809.8 from } ^{234}\text{Np } ε \text{ decay, and } 810.0 7 \text{ from } 6.75\text{-h} ^{234}\text{Pa } β^- \text{ decay.}$ Additional information 10
818.2 <i>5</i> 825.6 <i>5</i> 844.1 <i>8</i>	1.2 <i>3</i> 7.8 <i>4</i> 1.3 <i>3</i>	1667.4 1911.10 1693.8?	(1^{-}) (1^{-}) (1^{-})	849.23 1085.11 849.23	3- 2+ 3-			
851.58 10	8.2 1	851.75	2+	0.0	0^+	[E2]	0.01514	$ \alpha(K)=0.01109 \ 16; \ \alpha(L)=0.00302 \ 5; \ \alpha(M)=0.000760 \ 11; \ \alpha(N+)=0.000263 \ 4 \\ \alpha(N)=0.000205 \ 3; \ \alpha(O)=4.89\times10^{-5} \ 7; \ \alpha(P)=9.03\times10^{-6} \ 13; \ \alpha(Q)=5.10\times10^{-7} \ 8 \\ \alpha(Q)=5.10\times10^{-7} \ 10\times10^{-7} \ 10\times1$
866.8 10 880.9 5 883.22 10	1.35 <i>17</i> 4.7 <i>5</i> 4.2 <i>4</i>	1911.10 1667.4 926.688	(1) (1^{-}) 2^{+}	1044.539 786.312 43.4978	1^{-} 2^{+}	E2	0.01409	$\alpha(K)=0.01040$ 15; $\alpha(L)=0.00276$ 4; $\alpha(M)=0.000692$ 10; $\alpha(N+)=0.000240$ 4

 $^{234}_{92}\mathrm{U}_{142}\text{-}9$

				²³⁴ Pa	β^- de	cay (1.159	9 min) 19	75Ar23,1990Sc09 (continued)
							$\gamma(^{234}\text{U})$ (co	ntinued)
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{d}	Comments
*887.29 10	8.42 ^a 11							 α(N)=0.000187 3; α(O)=4.46×10⁻⁵ 7; α(P)=8.25×10⁻⁶ 12; α(Q)=4.76×10⁻⁷ 7 I_γ: From 1975Ar23. I_γ=20.5 7 (1971GuZQ) and I_γ=22.2 2 (1990Sc09) significantly disagree with value from 1975Ar23, probably due to source contamination. Mult.: from ²³⁴Pa g.s. decay. E_γ: measured by 1972Sa06 from decays of 6.75-h and 1.17-min ²³⁴Pa in equilibrium with ²³⁸U source. Additional information 12. I_γ(883)/I_γ(926)=1.3 1 from ²³⁸Pu α decay compares with I_γ(883)/I_γ(926)=1.10 3 from ²³⁴Pa(1.159 min) β⁻ decay suggesting most of its intensity de-excites the 927-keV level. Additional information 4.
921.72 10	15.19 ^a 12	1911.10	(1^{-})	989.389	2^{-}			Additional information 38.
926.61 <i>10</i>	1.47 <i>16</i>	926.688	2+	0.0	0+	(E2) ^{&}	0.0128 4	α (K)=0.00956 <i>14</i> ; α (L)=0.00245 <i>4</i> ; α (M)=0.000613 <i>9</i> ; α (N+)=0.000213 <i>3</i> α (N)=0.0001653 <i>24</i> ; α (O)=3.96×10 ⁻⁵ <i>6</i> ; α (P)=7.34×10 ⁻⁶ <i>11</i> ; α (Q)=4.35×10 ⁻⁷ <i>6</i> I _γ : From 1975Ar23. I _γ =20.5 <i>12</i> (1971GuZQ) and I _γ =20.6 <i>2</i> (1990Sc09) significantly disagree with value from 1975Ar23, probably due to source contamination.
936.3 <i>10</i> 941.96 <i>10</i>	1.3 4 3.0 ^a 1	1863.15 1085.11	(1) 2 ⁺	926.688 143.24	2+ 4+	[E2]	0.01244	α (K)=0.00929 <i>13</i> ; α (L)=0.00236 <i>4</i> ; α (M)=0.000589 <i>9</i> ; α (N+)=0.000204 <i>3</i> α (N)=0.0001587 <i>23</i> ; α (O)=3.80×10 ⁻⁵ <i>6</i> ; α (P)=7.05×10 ⁻⁶ <i>10</i> ; α (Q)=4.21×10 ⁻⁷ <i>6</i> Additional information 16.
945.94 2	12 1	989.389	2-	43.4978	2+	(E1) ^{&}	0.00412	$\alpha(K)=0.00337 5; \alpha(L)=0.000571 8; \alpha(M)=0.0001355 19; \alpha(N+)=4.69 \times 10^{-5} 7$ $\alpha(N)=3.63 \times 10^{-5} 5; \alpha(O)=8.79 \times 10^{-6} 13; \alpha(P)=1.675 \times 10^{-6} 24; \alpha(Q)=1.286 \times 10^{-7} 18$ I _{γ} : From 1975Ar23. I γ =30.2 7 (1971GuZQ) and I γ =28.2 3 (1990Sc09) significantly disagree with value from 1975Ar23, probably due to source contamination.
960.0 <i>10</i> 996.1 <i>20</i> 1001.03 <i>10</i>	1.0 4 6.7 5 1000.0 24	1809.00 1781.27 1044.539	(1^{-}) $(0^{+},1)$ 0^{+}	849.23 786.312 43.4978	3 ⁻ 1 ⁻ 2 ⁺	E2	0.01107	$\alpha(K)=0.00835 \ 12; \ \alpha(L)=0.00204 \ 3; \ \alpha(M)=0.000507 \ 8; \ \alpha(N+)=0.0001760 \ 25 \ \alpha(N)=0.0001367 \ 20; \ \alpha(O)=3.28\times10^{-5} \ 5; \ \alpha(P)=6.10\times10^{-6} \ 9; \ \alpha(Q)=3.76\times10^{-7} \ 6 \ E_{\gamma}: measurement of 1972Sa06. \ Ice(K)=5.7. \ Additional information 15.$

 $^{234}_{92}\mathrm{U}_{142}\text{--}10$

	²³⁴ Pa β^- decay (1.159 min) 1975Ar23,1990Sc09 (continued)												
						<u>-</u>	$\gamma(^{234}\mathrm{U})$ (con	tinued)					
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{d}	Comments					
1041.70 10	1.47 ^{<i>a</i>} 8	1085.11	2+	43.4978	2+	[E2,M1]	0.023 13	$\alpha(K)=0.018 \ II; \ \alpha(L)=0.0036 \ I8; \ \alpha(M)=0.0009 \ 4; \ \alpha(N+)=0.00030 \ I5$ $\alpha(N)=0.00023 \ II; \ \alpha(O)=6.E-5 \ 3; \ \alpha(P)=1.1\times10^{-5} \ 6; \ \alpha(Q)=8.E-7 \ 5$ Ice(K)<0.8 (not observed). Additional information 17.					
1059.4 8	2.71 12	1911.10	(1 ⁻)	851.75	2^{+}								
1061.86 10	2.54 ^a 14	1911.10	(1^{-})	849.23	3-	0		Additional information 39.					
1081.9 <i>10</i>	1.07 22	1126.37	2+	43.4978	2+	(M1) ^{&}	0.0318	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0255 \ 4; \ \alpha(\mathbf{L}) = 0.00478 \ 7; \ \alpha(\mathbf{M}) = 0.001151 \ 17; \ \alpha(\mathbf{N}+) = 0.000401 \ 6 \\ &\alpha(\mathbf{N}) = 0.000310 \ 5; \ \alpha(\mathbf{O}) = 7.53 \times 10^{-5} \ 11; \ \alpha(\mathbf{P}) = 1.454 \times 10^{-5} \ 21; \\ &\alpha(\mathbf{Q}) = 1.167 \times 10^{-6} \ 17 \end{aligned}$					
1084.25 10	1.0 3	1085.11	2+	0.0	0+	[E2]	0.00952	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00726 \ 11; \ \alpha(\mathbf{L}) = 0.001694 \ 24; \ \alpha(\mathbf{M}) = 0.000419 \ 6; \\ &\alpha(\mathbf{N}+) = 0.0001455 \ 21 \\ &\alpha(\mathbf{N}) = 0.0001130 \ 16; \ \alpha(\mathbf{O}) = 2.71 \times 10^{-5} \ 4; \ \alpha(\mathbf{P}) = 5.07 \times 10^{-6} \ 8; \end{aligned}$					
1100 (0	2 0 4 17	10(0.0	(1-)	0.40.00	2-			$\alpha(Q)=3.24\times10^{-7}$ 5					
1120.68	2.04 I7	1969.9	(1^{-})	849.23	3-	([20]	0.00000						
1124.93* 10	0.+ 1	1120.37	2	0.0	0		0.00000						
1124.93 ^J 10	3.6 ¹ 1	1911.10	(1^{-})	786.312	1-								
1174.2 <i>10</i> 1193.73 <i>12</i>	2.3 2 16.14 ^{<i>a</i>} 12	1174.1 1237.35	(1,2 ⁺) 1 ⁻	0.0 43.4978	0+ 2+	E1	0.00277	$\alpha(K)=0.00226 \ 4; \ \alpha(L)=0.000377 \ 6; \ \alpha(M)=8.93\times10^{-5} \ 13; \ \alpha(N+)=4.12\times10^{-5} \ 6 \ \alpha(N)=2.39\times10^{-5} \ 4; \ \alpha(O)=5.80\times10^{-6} \ 9; \ \alpha(P)=1.109\times10^{-6} \ 16; \ \alpha(Q)=8.70\times10^{-8} \ 13; \ \alpha(IPF)=1.026\times10^{-5} \ 15 \ E_{\gamma}: measurement of 1972Sa06.$ Additional information 20.					
x1220.37 10	1.08 ^a 10							Additional information 5.					
1237.26 10	6.24 ^{<i>a</i>} 11	1237.35	1-	0.0	0+	E1	0.00262	$\alpha(K)=0.00213 \ 3; \ \alpha(L)=0.000354 \ 5; \ \alpha(M)=8.38\times10^{-5} \ 12; \\ \alpha(N+)=5.11\times10^{-5} \ 8 \\ \alpha(N)=2.25\times10^{-5} \ 4; \ \alpha(O)=5.44\times10^{-6} \ 8; \ \alpha(P)=1.042\times10^{-6} \ 15; \\ \alpha(Q)=8.20\times10^{-8} \ 12; \ \alpha(IPF)=2.21\times10^{-5} \ 4 \\ \text{Additional information 21.}$					
^x 1353.0 <i>15</i>	1.29 [@] 9		4-	1a ···-·	a .1		0.00777						
1392.7 10	4.11 24	1435.11	1-	43.4978	2+	E1	0.00221	$\begin{aligned} &\alpha(\mathbf{K}) = 0.001743 \ 25; \ \alpha(\mathbf{L}) = 0.000288 \ 4; \ \alpha(\mathbf{M}) = 6.82 \times 10^{-3} \ 10; \\ &\alpha(\mathbf{N}+) = 0.0001120 \ 17 \\ &\alpha(\mathbf{N}) = 1.83 \times 10^{-5} \ 3; \ \alpha(\mathbf{O}) = 4.43 \times 10^{-6} \ 7; \ \alpha(\mathbf{P}) = 8.50 \times 10^{-7} \ 12; \\ &\alpha(\mathbf{Q}) = 6.75 \times 10^{-8} \ 10; \ \alpha(\mathbf{IPF}) = 8.84 \times 10^{-5} \ 14 \end{aligned}$					

From ENSDF

 $^{234}_{92}\mathrm{U}_{142}$ -11

				234	Pa β⁻	decay (1.1	159 min)	1975Ar23,1990Sc09 (continued)
							γ (²³⁴ U)	(continued)
${\rm E}_{\gamma}^{\dagger}$	Ι _γ ‡ <i>с</i>	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{d}	Comments
								E _γ : From 1975Ar23. I _γ =3.89 <i>10</i> measured by 1990Sc09 and 1.56 <i>15</i> measured by 1975Ar23 do not agree. I _γ of 1990Sc09 may include some counts from the 1393.9γ of ²³⁴ Pa g.s. decay. However, the 1434γ deexciting the same level should not have any interference from the ²³⁴ Pa g.s. decay. The ratio, I _γ (1392γ)/I _γ (1434γ)=0.356 <i>20</i> from I _γ 's measured in ²³⁴ Np ε decay; this ratio is 0.402 <i>12</i> and 0.190 <i>28</i> from I _γ 's of 1990Sc09 and 1975Ar23, respectively. The ratio of 0.356 <i>20</i> is used by the evaluators to obtain I _γ (1392γ) given here.
1413.88 10	2.69 ^{<i>a</i>} 8	1457.46	(2 ⁻)	43.4978	2+	[E1]	0.00217	$\begin{aligned} &\alpha(\mathbf{K}) = 0.001700 \ 24; \ \alpha(\mathbf{L}) = 0.000281 \ 4; \ \alpha(\mathbf{M}) = 6.64 \times 10^{-5} \ 10; \ \alpha(\mathbf{N}+) = 0.0001235 \ 18 \\ &\alpha(\mathbf{N}) = 1.780 \times 10^{-5} \ 25; \ \alpha(\mathbf{O}) = 4.32 \times 10^{-6} \ 6; \ \alpha(\mathbf{P}) = 8.28 \times 10^{-7} \ 12; \ \alpha(\mathbf{Q}) = 6.59 \times 10^{-8} \\ &10; \ \alpha(\mathbf{IPF}) = 0.0001005 \ 1 \\ &\text{Additional information 22.} \end{aligned}$
1434.14 10	11.56 ^{<i>a</i>} 23	1435.11	1-	0.0	0+	E1	0.00213	α (K)=0.001660 24; α (L)=0.000274 4; α (M)=6.48×10 ⁻⁵ 9; α (N+)=0.0001348 19 α (N)=1.737×10 ⁻⁵ 25; α (O)=4.21×10 ⁻⁶ 6; α (P)=8.08×10 ⁻⁷ 12; α (Q)=6.44×10 ⁻⁸ 9; α (IPF)=0.0001123 16 Other measurements: Iy=8.2 9 (1975Ar23), 9.4 15 (1992Si17).
1458.5 <i>15</i> 1501 <i>2</i>	$2.25 \approx 1.1^{\textcircled{0}}$	1501.0 1501.0	(1) (1)	43.4978 0.0	2^+ 0^+			
1510.21 <i>10</i> 1527.27 <i>10</i>	2.39^{a} 9	1553.69	(1) 1 ⁺	43.4978 43.4978	2+ 2+	E2+M1	0.009 4	Additional information 25. $\alpha(K)=0.007 \ 4; \ \alpha(L)=0.0014 \ 6; \ \alpha(M)=0.00033 \ 14; \ \alpha(N+)=0.00022 \ 10$ $\alpha(N)=9.E-5 \ 4; \ \alpha(O)=2.1\times10^{-5} \ 9; \ \alpha(P)=4.1\times10^{-6} \ 17; \ \alpha(Q)=3.2\times10^{-7} \ 15;$ $\alpha(IPF)=0.00011 \ 5$ Other measurement: $I\gamma=2.1 \ 3 \ (1975Ar23).$
1550.0 10	1.35 8	1592.38	(1)	43.4978	2^{+}			
1553.75 <i>10</i> 1558.4 <i>10</i>	9.75 ^{<i>a</i>} 11 0.85 10	1553.69 1601.81	(1) 1 ⁺	0.0 43.4978	0^+ 2 ⁺	M1	0.01228	Additional information 26. $\alpha(K)=0.00971 \ 14; \ \alpha(L)=0.00181 \ 3; \ \alpha(M)=0.000434 \ 7; \ \alpha(N+)=0.000330 \ 5$ $\alpha(N)=0.0001169 \ 17; \ \alpha(O)=2.84\times10^{-5} \ 4; \ \alpha(P)=5.49\times10^{-6} \ 8; \ \alpha(Q)=4.43\times10^{-7} \ 7; \ \alpha(IPF)=0.000178 \ 3$
1570.67 10	1.29 ^{<i>a</i>} 10	1570.61	1+	0.0	0+	M1	0.01204	$\alpha(K) = 0.00951 \ 14; \ \alpha(L) = 0.001769 \ 25; \ \alpha(M) = 0.000425 \ 6; \ \alpha(N+) = 0.000335 \ 5 \\ \alpha(N) = 0.0001145 \ 16; \ \alpha(O) = 2.79 \times 10^{-5} \ 4; \ \alpha(P) = 5.38 \times 10^{-6} \ 8; \ \alpha(Q) = 4.34 \times 10^{-7} \ 6; \\ \alpha(IPF) = 0.000187 \ 3 \\ (IPF) = 0.000187 \ $
1593 87 10	2.25 <mark>a</mark> 7	1592.38	(1)	0.0	0^{+}			Other measurement: $1\gamma = 1.2.3$ (1975Ar23). Additional information 28
1601.8 <i>15</i>	0.56 25	1601.81	1+	0.0	0+	(M1)	0.01146	$\begin{aligned} &\alpha(\mathrm{K}) = 0.00902 \ 13; \ \alpha(\mathrm{L}) = 0.001679 \ 24; \ \alpha(\mathrm{M}) = 0.000403 \ 6; \ \alpha(\mathrm{N}+) = 0.000351 \ 5 \\ &\alpha(\mathrm{N}) = 0.0001086 \ 16; \ \alpha(\mathrm{O}) = 2.64 \times 10^{-5} \ 4; \ \alpha(\mathrm{P}) = 5.10 \times 10^{-6} \ 8; \ \alpha(\mathrm{Q}) = 4.11 \times 10^{-7} \ 6; \\ &\alpha(\mathrm{IPF}) = 0.000210 \ 4 \end{aligned}$
1667.6 <i>10</i> 1694.1 <i>10</i> <i>x</i> 1720.5 <i>15</i> <i>x</i> 1732.2 <i>15</i>	1.37 [@] 8 0.54 [@] 11 0.40 [@] 17 2.2 3	1667.4 1693.8?	(1 ⁻) (1 ⁻)	0.0 0.0	0+ 0+			

From ENSDF

γ ⁽²³⁴U) (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Comments
1737.75 10	25.3 ^{<i>a</i>} 2	1781.27	$(0^+, 1)$	43.4978	2^{+}	Additional information 31.
^x 1759.81 10	1.74 ^a 6					Additional information 6.
1765.44 10	10.4 ^{<i>a</i>} 1	1809.00	(1^{-})	43.4978	2^{+}	Additional information 32.
1796.2 10	0.50 8	1796.4	(1)	0.0	0^+	
1809.04 10	4.44 ^a 8	1809.00	(1^{-})	0.0	0^{+}	Other measurements: $I\gamma = 4.3 5 (1975 \text{Ar}23)$, 3.9 8 (1992Si17).
1819.69 <i>10</i>	1.05 ^a 6	1863.15	(1)	43.4978	2^{+}	Additional information 33.
1831.36 10	20.7 ^{<i>a</i>} 2	1874.88	(1)	43.4978	2^{+}	Additional information 34.
1863.09 10	1.44 11	1863.15	(1)	0.0	0^{+}	Other measurement: $I\gamma = 1.21 \ 25 \ (1975 \text{Ar} 23)$.
1867.69 10	11.0 ^{<i>a</i>} 1	1911.10	(1^{-})	43.4978	2+	Additional information 40.
1874.88 10	9.72 ^{<i>a</i>} 11	1874.88	(1)	0.0	0^{+}	Additional information 35.
1893.51 <i>11</i>	2.25^{a} 6	1936.76	(1)	43.4978	2+	Additional information 42.
1911.19 <i>11</i>	7.41 ^{<i>a</i>} 8	1911.10	(1^{-})	0.0	0^{+}	Additional information 41.
1926.5 10	0.54 5	1969.9	(1^{-})	43.4978	2+	
1937.04 13	2.49 ^{<i>a</i>} 8	1936.76	(1)	0.0	0+	Additional information 43.
19/0.0 15	0.49 4	1969.9	(1^{-})	0.0	0^+	
^x 2022.24 ^b 12	0.22 2					
^x 2041.23 ^b 13	0.13 <i>I</i>					
^x 2065.80 ^b 13	0.084 12					
^x 2093.19 ^b 38	0.024 7					
^x 2102.14 ^b 15	0.072 10					
^x 2136.69 ^b 14	0.084 5					

[†] Weighted average of values in 1975Ar23 and 1990Sc09, except as noted. Energies in 1967Wa09 (semi) and 1963Bj02 (s ce) generally agree with those given here. Earlier measurements: 1953St36, 1954Cr32, 1954Jo19, 1955De40, 1956On07, 1959Sc31.

[‡] From 1999Nz01, deduced by using a statistical analysis of experimental results reported in 1992Si17, 1990Sc09, 1986Mo09, 1975Ar23, 1971GuZQ, 1967Wa09, and 1963Bj02, unless otherwise noted. The Normalized Residuals (1994Ka08) method was applied to discrepant data in 1999Nz01.

[#] From conversion electron data in 1963Bj02. The intensities of strong conversion electron lines have a 10% precision. Conversion electron data from 234 Pa (6.75 h) and 234 Np decay also have been used here.

^(a) Transitions identified in equilibrium spectrum (234 Th + 234 Pa g.s. + 1.17-min 234 Pa). Intensities have been corrected for contributions from 234 Pa g.s. decay (1975Ar23).

& From ²³⁴Pa g.s. decay.

13

^{*a*} Measured by 1990Sc09 following the decay of ²³⁸U, in equilibrium with its daughter nuclei. Only γ rays that do not have any or have negligible contributions from ²³⁴Pa g.s. decay have been included here. See 1990Sc09 for their complete list of experimental γ -ray intensities.

^b Reported only by 2004Br43. Intensity relative to $I\gamma(1001\gamma)=1000$.

^c For absolute intensity per 100 decays, multiply by $8.42 \times 10^{-4} 8$.

^d Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies,

²³⁴Pa β^- decay (1.159 min) 1975Ar23,1990Sc09 (continued)

 $\gamma(^{234}\text{U})$ (continued)

assigned multipolarities, and mixing ratios, unless otherwise specified.

^e Multiply placed with undivided intensity.

^f Multiply placed with intensity suitably divided.

 $x \gamma$ ray not placed in level scheme.

Decay Scheme (continued)

Decay Scheme (continued)

$\frac{2^{34} \text{Pa} \ \beta^{-} \text{ decay (1.159 min)}}{1975 \text{Ar} 23,1990 \text{Sc} 09 \text{ (continued)}}$

Band(G): $K^{\pi}=2^+$ band Band(H): $K^{\pi}=(0^-)$ band

<u>2+ 1126.37</u> <u>1- 1237.35</u>

 $^{234}_{92}U_{142}$