Adopted Levels, Gammas

			History	
	Туре	Author	Citation	Literature Cutoff Date
	Full Evaluation	E. Browne, J. K. Tuli	NDS 108,681 (2007)	1-Jun-2006
$O(\beta^{-}) = -1810.9$; $S(n) =$	6844.7 21: S(p)=66	$32.2.12: \Omega(\alpha) = 4857.7.7$	2012Wa38	
Note: Current evaluatio	n has used the follo	wing Ω record -1810	8 6844 6 21 6632 4 12	4858 7 7 2003A µ03
Additional information	1		0 0011.0 21 0032.1 12	20031403.
Other reactions:	1.			
235 U(γ ,n): 2006Gi01.				
²³⁵ U(n,2n): 2005YoZZ,	2005Ha23, 2005Bi	ZW, 2002KoZO, 2000Yo	ZS, 1999CaZV.	
²³⁴ U(p,p'): 2005LeZU.				
²³⁴ U(n,n'): 2003YoZY.				
233 U(n, γ): 2005MaZT,	2005Ha23, 2003Yo	ZZ, 2003KaZM, 2000Mo	ZZ, 1999YuZT.	
Level energies and two	-quasiparticle struct	ares of $K^{\pi}=0^{-}, 2^{+}, 1^{-}, 2^{+}$	-, 3 ⁻ collective states we	ere calculated by 1964So02, 1975Iv03.
For calculated energies	of odd-parity states	, see also 1969B113, 1970	Da16, 1970Ne08, 1971	Ko31, 1975Iv03, 1976Iv01, 1976Iv04,
1986Da03, 1989Ch	07; for calculated en	nergies of even-parity stat	tes, see, 1971Ko31, 1973	Gu09, 1975Sa19, 1976Iv01, 1976Iv04,
1978To13, 1981Su1	3, 1982Ca07, 1983	Ge05, 1984Dr08, 1985Zh	08, 1986Da03, 1989Ch0	7.
For energy calculations	and discussions on	the nature of K, $J^{\pi}=0,0^+$	collective state at 809.88	3 keV, see 1972Ch12, 1973Ch04,
1973Im02, 1975Iv0	3, 1976Ra12, 1979	Ch02, 1985Zh08, 1987Le	17.	
Based on multiphonon-	method calculations	, 1987Le17 concluded th	at the J^{π} ,K=1 ⁻ ,0 state at	1237 keV, as well as the $0^+, 0$ state at
1044 keV, cannot b	e interpreted as a tv	o-phonon state.		
For calculations of B(E	2) values for excitat	ion of various 2 ⁺ collect	ive states, see 1965Be40,	, 1975Iv03, 1981Ma35, 1984Dr08,
1987Ca31, 1988Le1	4, 1988Ri07.			
For calculations of B(E	3) values for excitation	ion of 3 ⁻ collective state	s, see 1970Ne08, 1971K	o31, 1975Iv03, 1988Le14, 1989Ch07.
Deformation parameters	s were deduced from	n Coulomb excitation by	1973Be44, 1977Mi11; fi	com (α, α') inelastic scattering by
1976Da17 and 1979	Es06 ; from (p,p') o	lata by 1981Ro09; from 1	nuonic x rays by 1984Z	102. For calculated deformation parameters
see 1970Ga12, 197	1Bo54, 1975Iv03, 1	981Kr21, 1982Eg01, 198	2Du16, 1982Li01, 1983I	Ro14, 1984Eg01, 1988Mi17.
For calculated electric of	juadrupole- and hex	adecapole-moments, see	1970Ga12, 1975Iv03, 19	78Ne13, 1982Eg01, 1982Li01,
1983Ro14.				
Half-life for pionic dec	ay was calculated b	y 19881002.	10000 05 10000 01	
For theoretical calculati	ons of moment of 1	nertia, and discussions, so	e 1980Du07, 1982Eg01,	, 1982P102, 1987M126, 1991Ba09,
1991Pi05.	shift shange in me	on course aborros redius r	was deduced by 1000Ca	$10. (\Lambda = \pi^2) = f_{00} = \frac{23411}{(\Lambda = \pi^2)} = f_{00}$
2361D-1 004 8. A c	r^2 for 234 U = 0.202	24 if $A < r^2 > -0.147 / 17.4$	$23611 (1000 C_{2}28)$ So	$20. (\Delta < 1 > 101 + 0)/(\Delta < 1 > 101)$
$D = 1.994$ 0; $\Delta <$	1 > 101 = 0.295	54 , II $\Delta < I >= 0.147 I / I$	$1072M_011 = 1072W_000$	2 also 1992All 7, 2002O01, 2003D102.
	$6 10801 \div 10 10801$	Uy 19/1Fa55, 19/2D110,	1972 wall, 1972 web9, 107 1007 $Dy1$	$4 1005 T_{0}01$
The energy and Γ of the	e giant octupole res	onance were calculated b	v_1976M_942 and of the	4, 19951a01.
The energy and 1 of the	e glain oetupole les	shance were calculated b		quadrupole resonance by 1977Ryor.
Exotic decays stu	died via heavv-u	article emission (c	luster decavs)	
and decay rates c	alculated:			
1984Po08 (²⁴ Ne,	²⁶ Ne, ²⁸ Mg);	1986Ir01 (²⁴ Ne,	²⁶ Ne, ²⁸ Mg);	
1986Ka46 (²⁴ Ne,	²⁵ Ne, ²⁶ Ne,	²⁸ Mg); 1986Po15	(²⁴ Ne, ²⁶ Ne);	
1989Ba18 (²⁴ Ne,	²⁰ Mg); 1989C:	.03 (²⁰ Ne, ²⁴ Mg);	28.	
19895113 (²¹ Ne,	26 Mg); 1990Bi 26 No 28 Mg);	$1000 \text{ (}^{20}\text{Mg}\text{)}; 1990\text{Kal}$	²⁸ Ma), 1001Pu01 (28Ma)
1990Bazo (Ne, 1992Cu10 (²⁴ Ne	^{26}Ne ^{28}Ma	19905H01 (Me,	'ng); 1991Buol (ng);
1993Bu05 (²⁸ Mg).	ne, ng).			
1993Go18 (²⁴ Ne).				
1993Ka21 (²⁴ Ne).				
1993Si26 (²⁴ Ne,	26 Ne, 28 Mg).			
1994Bu07 (²⁴ Ne,	²⁰ Mg).			
1994M118 (²⁰ Mg).	28mm)			
$1995 \times 1000 \text{ Ne}$	$^{26}Ne^{28}Ma$			
1996Bu05 (²⁸ Ma).	iic, iig).			
1997Bu20 (24Ne).				
1997Ku01 (²⁰ Ne).	20			
1997MiZP (²⁴ Ne,	²⁸ Mg).			
1997Ro24 (²⁴ Ne,	∠°Mg).			

 $^{234}_{92}\rm{U}_{142}\text{-}2$

Other: 20000020.	1997Tr17 1998Ro11 1999Mi11 2001St29 2002Ba80 2002Du16 2002Sa55 2004Ba64 2004Re22 2005Bh02 2005Bu38 2005Ku04 2005Ku32 0ther: 2005Ku32	(²⁴ Ne, (²⁴ Ne, (²⁴ Ne, (²⁴ Ne, (²⁴ Ne, (²⁴ Ne, (²⁶ Ne, (²⁴ Ne, (²⁸ Mg). (²⁴ Mg, (²⁴ Ne, (²⁶ Ne). (²⁶ Ne).	<pre>26Ne, 28Mg). 28Mg). 28Mg). 26Ne, 28Mg). 28Mg). 26Ne, 28Mg, 26Ne,</pre>	<pre>²⁸Mg). ²⁸Mg, ²⁸Mg). ³⁰Mg). ²⁸Mg).</pre>	³⁰ Mg).
	Other: 20	000Gu28.			

²³⁴U Levels

Band(α) K=0⁺ g.s. rotational band.

Cross Reference (XREF) Flags

		 A 238Pu B 234Pa C 234Pa D 234Np 	α decay β^- decay (6.70 h) β^- decay (1.159 mi ε decay	$ \begin{array}{cccc} E & \text{Coulomb excitation} & I & {}^{235}\mathrm{U}(\mathrm{d},\mathrm{t}) \\ F & {}^{232}\mathrm{Th}(\alpha,2n\gamma),{}^{232}\mathrm{Th}({}^{9}\mathrm{Be},\alpha3n\gamma) & J & {}^{236}\mathrm{U}(\mathrm{p},\mathrm{t}) \\ \mathrm{in}) & G & {}^{234}\mathrm{U}(\mathrm{d},\mathrm{d}') & K & (\mathrm{HI},\mathrm{xn}\gamma) \\ \mathrm{H} & {}^{233}\mathrm{U}(\mathrm{d},\mathrm{p}) & L & {}^{237}\mathrm{Np}(\mathrm{p},\alpha) \end{array} $						
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF		Commer	its				
0.0	0+	2.455×10 ⁵ y 6	ABCDEFG JK	$\label{eq:constraint} \begin{split} &\%\alpha = 100\\ &\% \text{Ne} = 9 \\ &\text{Intrinsic}\\ &\text{electri}\\ &\text{from } \alpha\\ &\text{Coulo}\\ &T_{1/2}: \text{ rec}\\ &(1952)\\ &2.439 \\ &2.459 \\ &2.459 \\ &2.459 \\ &2.459 \\ &T_{1/2}(^2.2)\\ &\text{Early } T_1\\ &T_{1/2}(^2.2)\\ &\text{Early } T_1\\ &\text{SF half-T}\\ &T_{1/2}(S)\\ &\text{Other}\\ &\text{Syster}\\ &\text{Measure}\\ &T_{1/2}(\text{Ne})\\ &= 6.3 \times 10\\ &= 2.7 \times 10\\ &T_{1/2}(\text{tota}\\ &T_{1/2}(\alpha)/T\\ &= 9.1 \times 10\\ &\text{Measure}\\ &T_{1/2}(\text{Mg})\\ &= 1.1 \times 10\\ \end{split}$; %SF=1.64×10 ⁻⁹ 22 (10^{-12} 7; %Mg=1.4×10 ⁻¹¹ 3 electric-quadruple moment: Q(0)= c-hexadecapole moment: H(0)=2.4 nuonic x rays. Other measurement optical isomeric shift); Q(0)=10.47 mb excitation). commended in 1989Ho24. Measure F120), 2.520×10 ⁵ y 8 (1952Ki19), (10^5 y 24 (1970MeZN), 2.450×10 (10^5 y 7 (1980Ge 13), 2.458×10 ⁵ 3^{50} U, 2^{236} U, 2^{238} U) in 1981HoZI). ($_{2}$ measurements: 1939Ni03, 1949) ife recommended in 2000Ho27: 1 F)=1.42×10 ¹⁶ y 8 (1981Vo02), an values: 1.6×10^{16} y 7 (1952Gh27), natic T _{1/2} (SF): 2005Xu01. Others: ments for partial half-life of Ne de = 3.7×10^{17} y +12-9 (1987Sh27), 1^{17} y +21-13 (1989Tr11), 1^{18} y 20 from T _{1/2} (α)/T _{1/2} (Ne)=9.1 I)=2.455×10 ⁵ y 5. $T_{1/2}$ (Ne)=4.4×10 ⁻¹³ 5 (1989Mo07 -14 66 (revised in 1991Bo20 from ments for partial half-life of Mg do)=1.1×10 ¹⁸ y +13-6 (1987Sh27) 1^{18} y +4-3 (1989Tr11),	(10.61) $(9 \ 14^{-1})$ $(5, H(1)^{-1})$ (2.47×5^{-1}) (3.47×5^{-1}) (3.47×5^{-1}) (3.47×5^{-1}) (3.47×10^{-1}) (3.47×10^{-1}) (6 and intrinsic were deduced by 1984Zu02 0)=13.7 20 (1978Ge10, (0)=3.3 5 (1973Be44, from f-lives: 2.475×10^5 y 16 $(10^5$ y 3 (1965Wh05), (1971DeYN, 1981VaZR), (1971LoZL, corrected for 1949Go18. ¹⁶ y 2, fr om 0×10^{16} y 15 (1987Sh27). $\times 10^{16}$ y (1952Se6 7). Ro12, 1998Du05. ¹⁴ 66 (1991Bo20) and. in 1989Mo07).			

²³⁴U Levels (continued)

E(level) [†]	Jπ‡	T _{1/2}	XREF	Comments
				$T_{1/2}(\alpha)/T_{1/2}(Mg)=1.4\times10^{-13} 3 (1989Mo07),$ $T_{1/2}(Mg)/T_{1/2}(Ne)=0.66 5 (1991Bo20).$ %SF is from $T_{1/2}(SF)=1.5\times10^{16}$ y 2 and $T_{1/2}=2.455\times10^5$ y 6.
43.4981 10	2+	0.252 ns 7	ABCDEFGHI JK	%Ne and %Mg are from 1991Bo20. $Q(^{234}U):Q(^{236}U):Q(^{238}U)=1:1.13 9:1.13 10$, by γ resonance (1974Me18).
				Q(²³⁴ U):Q(²³⁶ U):Q(²³⁸ U)=1:0.99 5:1.11 7; change in nuclear radius between the g.s. and the 2 ⁺ state $\Delta < r^2 > /(r^2) = 4.7 \times 10^{-6}$ 13, deduced by nuclear γ -ray resonance following ²³⁸ Pu α decay; $\Delta < r^2 > /(r^2) = -12.2 \times 10^{-6}$ 59 by comparing isomeric shifts for ²³⁴ U and ²³⁷ Np, if $\Delta < r^2 > = -27 \times 10^{-3}$ 5 fm ² for ²³⁷ Np (1974Mo12). J ^{π} : 43.48 γ to 0 ⁺ is E2.
143.352 4	4+		ABCDEFGHIJK	T _{1/2} : from (α)(ce)(t) in ²³⁸ Pu decay. See also Coulomb excitation. B(E4) \uparrow =1.96 56 (1973Be44)
206 072 1	6+			J [*] : 99.8 γ to 2 ⁺ state is E2; Coulomb excitation; (d,p) and (d,t) data.
497.04 3	8 ⁺		AB EFGHIJK	J^{π} : 200.9 γ to 6 ⁺ is E2; Coulomb excitation, (d,p), (d,t), and (d,d') data.
741.2 5	10^{+}		EF K	(-,,-)
786.288 [#] 16	1-		ABCD FGH J	J ^{π} : 742.81 γ to 2 ⁺ is E1, 786.27 γ to 0 ⁺ is (E1). Ratio of their reduced transition intensities is in good agreement with Alaga rule for K=0.
809.907 [@] 18	0^+	<0.1 ns	ABCD FG J	J^{π} : 810-keV transition to 0 ⁺ is E0.
840.266# 18	2-		ADCDEECU 1	$R(F_2) \uparrow < 0.50, 7, (1074 Ma 15)$
649.200 16	5		ADCDEFGR J	J^{π} : Coulomb excitation; (d,p), (d,d') data; reduced transition intensity ratio of γ rays to 2 ⁺ and 4 ⁺ states.
851.74 [@] 3	2+	≥1.74 ps	ABCDEF IJ	J ^{π} : 808 γ to 2 ⁺ level is E0+E2. T _{1/2} : calculated by the evaluators from B(E2) \leq 0.098 <i>13</i> (1974Mc15), using a branching ratio of I γ (851 γ)/total I(γ +ce) from level=0.2.
926.720 ^{&} 15	2+	1.38 ps 17	ABCDE GHIJ	J ^{π} : Coulomb excitation; γ rays to 0 ⁺ and 4 ⁺ . T _{1/2} : calculated by the evaluators from measured B(E2)=0.123 <i>13</i> and I γ (926 γ)/total I(γ +ce) from level=0.415 <i>23</i> .
947.64 [@] 6	4+		AB F J	J^{π} : 804.4 γ to 4 ⁺ state is E0+E2.
962.546 [#] 23	5-		B FG	J ^{π} : reduced transition intensity ratio of γ rays to 4 ⁺ , 6 ⁺ levels; (d,d') data.
968.425 ^{&} 21	3+		B HIJ	J^{π} : γ rays to 2 ⁺ and 4 ⁺ levels; (d,p) and (d,t) data.
989.430 ^a 13	2-	0.76 ns 4	ABCD F I	J^{π} : 140 and 203 γ rays to 3 ⁻ and 1 ⁻ levels are M1+E2. T _{1/2} : by $\gamma\gamma$ (t) in 6.70-h ²³⁴ Pa decay.
1023.77 ^{&} 3 1023.8 7	4^+ 12 ⁺		ABFHJ EFK	J^{π} : γ rays to 2^+ and 6^+ states.
1023.826 ^{<i>a</i>} 19	3-		ABEGI	J^{π} : Coulomb excited with B(E3)=0.22 5 (1974Mc15).
1044.536 ^b 23	0^{+}		A CD F J	J^{π} : 234.6-keV transition to 0 ⁺ state is E0.
1069.281 ^{<i>a</i>} 16	4-		BI	J^{π} : 45.45 γ to 3 ⁻ is M1+E2, 106.68 γ decays to 5 ⁻ ; (d,t) reaction, and fit to the band.
1085.26 ^b 4	2^{+}		ABCD F J	J^{π} : γ rays to 0^+ and 4^+ levels.
1090.89 ^{&} 4	5+		B HIJ	J ^{π} : γ rays to 6 ⁺ and 4 ⁺ states; energy fit to the band; (d,p) and (d,t) data.
1096.12 [@] 8	6+		B F	J^{π} : 799.7 γ to 6 ⁺ is E0+E2.
1125.28 [#] 4	7^{-}		BFJ	J ^{π} : γ rays to 8 ⁺ and 6 ⁺ ; energy fit to the band.
1126.626 ^c 25	2+		BC H J	J ^{π} : γ rays to 0 ⁺ , 4 ⁺ states; (d,p) reaction.
1127.552 ^{<i>a</i>} 19	5-		BGI	J^{π} : 103.77 γ to 3 ⁻ is (E2); 831.5 γ decays to 6 ⁺ , energy fit to the band; (d,t) and (d,d') data.

²³⁴U Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Х	REF	Comments
1150 2				G	
1165.44 ^C 3	3+		В	НJ	J^{π} : 196.8 γ to 3 ⁺ is E0+E2+M1.
1172.043 ^{cc} 19 1174.1 4	6 ⁺ (1,2 ⁺)		B C	F HI G	J^{n} : γ rays to 4 ⁺ and 8 ⁺ states. The levels seen in (d,d') and in 1.159-min ²³⁴ Pa β^{-} decay at 1174±2 and 1174.2±0.6 keV, respectively, are listed here as the same level solely on the basis of their energy. No structure information is available; level seen in (d,d') may be a different state than the state
1194.748 ^a 17	6-		В	I	populated in the 1.159-min $^{-1}$ Pa β^{-1} decay. J^{π} : γ' s to 0^+ , 1^- , 2^- levels. J^{π} : 67.1 γ to 5^- is M1+E2, 125.46 γ to 4^- is E2; γ rays to 6^+ and 7^- states: energy fit to the band
1214.71 ^c 5 1218 2	4+		В	НЈ G	J^{π} : γ rays to 2^+ and 6^+ states.
1237.256 ^d 19	1-		BCD	G	J ^{π} : 1237.22 γ to 0 ⁺ is E1. Ratio of reduced transition intensities of 1237 γ and 1194 γ is consistent with Alaga rule for K=0.
1261.782 ^{&} 25 1274.29 ^c 8	7 ⁺ (5 ⁺)		B B	Н	J^{π} : γ rays to 6^+ , 8^+ ; energy fit to the band. J^{π} : (d,p) data; γ ray to 6^+ state and γ ray from 3^+ state; energy fit to the band.
1277.461 ^{<i>a</i>} 23	7-		В	GΙ	J^{π} : γ rays to 5 ⁻ , 8 ⁺ levels; energy fit to the band; (d,t) data.
1292.75 [@] 21	8+			F	J^{π} : 795.7 γ to 8 ⁺ state is E0+E2.
1312.18 ^d 9	3-		ΒE	G	B(E3) \uparrow =0.22 7 (1974Mc15) J ^{π} : Coulomb excitation and (d,d') data.
1335.6?# 5	9-			F	J^{π} : energy fit to the band.
1339 2	14^{+}		я	G F K	
1341.33 [°] 9	(6^+)		В	Н	J^{π} : γ rays to 5 ⁻ , 6 ⁺ states; (d,p) data.
1365.8 ^{&} 3	(8 ⁺)			F	
1421.257 ^e 17	6-	33.5 µs 20	В	I	J^{π} : 351.9 γ to 4 ⁻ level is E2; 143.78 γ to 7 ⁻ is not quadrupole. (d,t) data support this assignment.
<i>.</i>					T _{1/2} : from $\gamma\gamma$ (t) in 6.70-h ²³⁴ Pa decay.
1435.380 ^{<i>f</i>} 23	1-		CD	I	J^{π} : 1435.0 γ to 0 ⁺ is E1.
1447.52 ^d 7	5-		В	G	J^{π} : (d,d') data.
1451.4				I	
1457.167 8	(2 ⁻)		BCD	1	J^{n} : γ ray only to 2 ⁺ member of the g.s. band, probable γ rays to 1 ⁻ of the K=0 band and to 2 ⁻ of the K=2 band may suggest J^{π} =1,2 ⁻ . The authors in 1968Bj05 identified the 2 ⁻ state of the K=1, ν 7/2[743], ν 5/2[633] band at 1464 keV in their (d,t) spectrum. The 1457-keV level populated in ²³⁴ Pa β^{-} decay might be the same 2 ⁻ state, as suggested in 1975Ar23. The 475.5 and 453.6 γ rays from the 1911 level is consistent with this assignment.
1473				Н	-
1486.16 ^{<i>f</i>} 12	(3 ⁻)		В	GΙ	B(E3) \uparrow =0.04 <i>I</i> B(E3) \uparrow : From (d,d') data. J ^{π} : (d,t) and (d,d') data; γ rays to 2 ⁺ and 4 ⁺ .
1486.7 ^e	(7 ⁻)			I	J^{π} : (d,t) data.
1496.111 <mark>8</mark> 21	3+		В	Н	J^{π} : 1352.9- and 369.5-keV γ rays to 4 ⁺ and 2 ⁺ levels are M1; (d,p) reaction.
1500.99 10	(1)		CD	I	J ^{π} : γ 's to 0 ⁺ , 2 ⁺ levels limit J ^{π} to 1± and 2 ⁺ ; ε decay from (0 ⁺) 234 Np suggests J ^{π} Ne 2 ⁺ .
1502.38 7	3,4+		В		J ^{π} : γ rays to 2 ⁺ and 4 ⁺ ; β decay from 4 ⁺ ²³⁴ Pa.
1510.23 12	1		D		J^{π} : γ rays to 0 ⁺ and 2 ⁺ ; ε feeding from 0 ⁺ ²³⁴ Np.
1533.31 ^J 7	(4-)		В	I	J ^{π} : γ rays to 2 ⁻ , 4 ⁻ and 4 ⁺ levels; β decay from 4 ⁺ ²³⁴ Pa; (d,t) data.

Adopted Levels, Gammas (continued)

²³⁴U Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	2	KREF	Comments
1537.228 ^g 21	4+		В	Н	J^{π} : 372.4 γ to 3 ⁺ level is M1+E2; γ rays to 2 ⁺ , 6 ⁺ levels; (d,p) data.
1543.69 5	4+		В		J^{π} : γ rays to 2 ⁺ and 6 ⁺ levels.
1548.28 10	(5)		В		J^{π} : γ ray to 6 ⁺ state and probably to 4 ⁻ , γ ray from 4 ⁺ suggest $J^{\pi}=4^+,5\pm$. Nonobservations of γ -ray transitions to lower spin levels may imply J=5.
1552.555 ^h 18	5+	2.20 ns 25	В	Н	J^{π} : 131.3 γ to 6 ⁻ is E1; 584.1 γ to 3 ⁺ ; (d,p) data.
1553.60 20	(1)		С	G	J^{π} : γ rays to 0 ⁺ , 2 ⁺ levels; log <i>ft</i> for the β^- feeding from 1.159-min 234 Pa β^- decay
1567.7 <mark>e</mark>	(8^{-})			т	J^{π} : (d,t) data
1570.690 ^{<i>i</i>} 23	1+		CD		J^{π} : 1570.7 γ to 0 ⁺ is M1.
1581 59 <i>5 11</i>	(5^{-})		R	GТ	I^{π} : γ rays to 3^{-} 5 ⁻ states: (d t) (d d') data
1588.819 ^g 22	(5 ⁺)		B	Н	J^{π} : 1292.8y to 6 ⁺ is M1; 565.2y to 4 ⁺ is mixed E2; (d,p) data.
1589.02 [#]	11-			F	I^{π} energy fit to the hand
1592.29 6	(1)		C	F	J^{π} : γ rays to 0 ⁺ , 2 ⁺ levels; log <i>ft</i> for the β^- feeding from (0 ⁻), 1.159-min ²³⁴ Pa β^- decay.
1601.0 1601.826 <i>21</i>	1+		CD	I	J ^{π} : 1558.7 γ to 2 ⁺ state is M1; 556.0 γ to 0 ⁺ is mixed E2. A possible configuration is K=1, $\nu \nu$ 7/2[624],5/2[633].
1619.58 ^h 10 1624.4	(6 ⁺)		В	H I	J^{π} : (d,p) data.
1649.99 <i>^f 11</i>	(6 ⁻)		В	GΙ	J^{π} : (d,t) data.
1651.2 ^e	(9-)			I	J^{π} : (d,t) data.
1653.30 7	(3 ⁺)		В		J^{π} : 629.4 γ to 4 ⁺ state is (M1); γ ray to 2 ⁻ .
1653.9 <mark>8</mark>	(6^{+})			Н	J^{π} : (d,p) data.
1667.4 4	(1 ⁻)		С		J ^{π} : γ rays to 0 ⁺ , 3 ⁻ levels; log <i>ft</i> for the β^- feeding from (0 ⁻), 1.159-min ²³⁴ Pa β^- decay.
1675 2	16+			G	
1087.810	10				τπ (1 \ 1 .
1690.5	(7.)		_	н	$J^{(1)}$: (d,p) data.
1693.453J 24	5^{-}		В	1	J^{π} : γ rays to 3^{-} , 7^{-} states; (d,t) data.
1693.7? 0	(1)		C		J^{*} : γ rays to 0°, 1°, 3° levels and log ff for the β ° leeding from 1.159-min ²³⁴ Pa β^{-} decay suggest $J^{\pi}=1^{-}$.
1696 2				G	
1718.5 ^{<i>f</i>}	(7^{-})			HI	J^{π} : (d,p) and (d,t) data.
1722.87 ^k 4	3-		В	G	J^{π} : 733.0 γ to 2 ⁻ is M1; γ ray to 5 ⁻ state.
1723.402 ¹ 17	4+		В		J^{π} : M1 γ -ray transitions to 3 ⁺ and 5 ⁺ levels.
1730.7	-		_	I	
1736.5 <mark>8</mark>	(7^{+})			Н	J^{π} : (d,p) data.
1737.43 7	3+		В		J^{π} : 1594.0 γ to 4 ⁺ state is M1,E2; γ ray to 2 ⁻ state; β decay from ²³⁴ Pa g.s. rules out $J^{\pi}=2^+$.
1738.17 6	(3+)		В		J ^{π} : 612.0 γ to 2 ⁺ is (M1); β^{-} feeding from ²³⁴ Pa g.s. suggests J ^{π} Ne 1 ⁺ , 2 ⁺ .
1747.1 ^j	(6 ⁻)			I	J^{π} : (d,t) data.
1749.6				Н	
1761.79 ^k 6	(4 ⁻)		В		J ^{π} : (M1) γ -ray transitions to 3 ⁻ , 4 ⁻ levels.
1770.79 ⁿ 9	(3+)		В		J ^{π} : γ rays to 2 ⁺ , 4 ⁺ states, and β feeding from ²³⁴ Pa g.s. suggest 3±, 4 ⁺ . Spin-parity of 3 ⁺ was proposed in 1986Ar05 from intensity ratio of γ rays to the g.s. band.
1779.4				I	
1780.2 ⁿ	(8^+)			Н	J^{π} : (d,p) data.

²³⁴U Levels (continued)

E(level) [†]	J π ‡	Х	KREF	Comments
1781.22 7	(0+,1)	С		J^{π} : γ rays to 2 ⁺ , 1 ⁺ , 1 ⁻ levels and log <i>ft</i> for the β^- feeding from 1.159-min ²³⁴ Pa suggest $J^{\pi}=0^+$, 1±.
1782.554 ¹ 23	5+	В	G	J^{π} : 245.37 γ to 4 ⁺ is M1; γ ray to 6 ⁻ state.
1784.18 13	4+	В		J^{π} : γ rays to 2^+ and 6^+ states.
1793.01 6	4+	В		J^{π} : γ rays to 2^+ and 6^+ states.
1796.3.6	(1)	C		J^{π} : γ rays to 0 ⁺ . 1 ⁻ levels and log <i>ft</i> for the β^- feeding from 1.159-min ²³⁴ Pa β^-
1807.2	(1)		н	decay.
1809.73 4	(1 ⁻)	С		J ^{π} : γ rays to 0 ⁺ , 2 ⁺ , 3 ⁻ levels; log <i>ft</i> for the β^- feeding from 1.159-min ²³⁴ Pa β^- decay.
1810.0 <i>j</i>	(7^{-})		т	I^{π} (d t) data
$1811.62^{n}.5$	(<i>i</i> , <i>j</i>) 4 ⁺	R	-	I^{π} : χ rays to 2^+ and 6^+ states
1838.9	7	D	т	J. y rays to 2 and 6 states.
1843 86 17	3 4 5-	R	-	I^{π} : γ rays to 3^{-} and 4^{+} states: β feeding from 234 Pa g s
1840.78	(8^+)	Б	ц	I^{π} : (d n) data
1860.6	(0)		п т	J . (u,p) data.
1860.0 1862.07 ^{<i>n</i>} 15	(5^{+})	D	1	π , a rate to 4^{\pm} and 6^{\pm} states; ρ feading from 234 Da as a energy fit to the hand
1863.16 9	(1)	C	G	The level observed in (d,d') at 1863 keV is assumed by the evaluators not to be the 5^+ member of the K=3 ⁺ band seen in ²³⁴ Pa ground state β^- decay at 1863.1 keV, since the 3 ⁺ and 4 ⁺ members of this band are not populated in (d,d').
				The level populated in (d,d') might be a completely different state than the one populated in 1.159-min ²³⁴ Pa β^- decay. J ^{π} : γ rays to 0 ⁺ , 2 ⁺ levels; log <i>ft</i> for the β^- feeding from 1.159-min ²³⁴ Pa β^- decay.
1875 3 1	(1)	C		I^{π} : α rays to 0^+ , 2^+ levels: log ff for the β^- feeding from 1.17 min 234 Pa β^- decay
$1875.5 + 1881.74^{m}.7$	(1) A^+	P	т	I^{π} : γ rays to 2^+ and 6^+ levels: (d t) data
1001.74 7	+ (0+)	Б		J^{T} (1) 1.
1891.3	(9))	-	н	J^{π} : (d,p) data.
1911.09 5	(1)	C		J [*] : γ rays to 0 ⁺ , 3 ⁻ levels; log <i>ft</i> for the β feeding from (0 ⁻), 1.159-min ²⁵⁴ Pa β decay.
1916.26 9	3,4+	В		J^{π} : γ rays to 2 ⁺ and 4 ⁺ states; β feeding in 4 ⁺ ²³⁴ Pa g.s. decay.
1927.52 <i>11</i>	4+	В		J^{π} : γ rays to 2^+ and 6^+ states.
1931.2 ^m	(5^+)		I	J^{π} : (d,t) data.
1932.1			Н	
1937.01 7	(1)	С		J^{π} : γ rays to 0 ⁺ , 2 ⁺ levels; log <i>ft</i> for the β^- feeding from (0 ⁻), 1.159-min ²³⁴ Pa β^- decay.
1940.50 9	4+	В		J^{π} : γ rays to 2^+ and 6^+ states.
1955.8 <mark>0</mark>	(3^{+})		I	J^{π} : (d,t) data.
1955.8			Н	
1958.77 <i>3</i>	3-	В		J^{π} : γ rays to 1 ⁻ , 4 ⁺ , and 4 ⁻ states; β feeding from 4 ⁺ ²³⁴ Pa ground state. K=3, with ν 7/2[743]- ν 1/2[631] configuration was suggested in 1986Ar05.
1968.84 10	4+,5	В		J^{π} : γ rays to 4 ⁺ and 6 ⁺ ; β feeding from 4 ⁺ , 2^{34} Pa g.s
1969.9 5	(1 ⁻)	С		J^{π} : γ rays to 0 ⁺ , 3 ⁻ levels; log <i>ft</i> for β^- feeding from (0 ⁻), 1.159-min ²³⁴ Pa β^- decay.
1981.26 7	4+	В		J^{π} : γ -ray transitions to 2 ⁺ and 6 ⁺ states.
1985.2 ^m	(6^{+})	-	I	J^{π} : (d,t) data.
2000.44° 13	(4^+)	В	Ī	J^{π} : 3 ⁻ .4 ⁺ from γ rays to 2 ⁺ and 5 ⁻ states: (d.t) data suggest $J^{\pi}=4^+$.
2019.81 13	4 ⁺	B	-	J^{π} : γ -ray transitions to 2^+ and 6^+ states.
≈2026.0		-	I	, ,
2033.52 5	$3^{+},4^{+}$	В	-	J^{π} : γ -ray transitions to 2^+ and 5^+ states.
2033.8	- ,-	-	Н	, ,
2037.05 17	4+.5	В		J^{π} : γ -ray transitions to 4 ⁺ and 6 ⁺ states; β feeding from 4 ⁺ . ²³⁴ Pa g.s.
≈2038.6	. ,0	-	I	
2058.7			I	

²³⁴U Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF		Comments
2062.8 17	18+	E	K	
2066.24 9	4+,5	В		J ^{π} : γ -ray transitions to 4 ⁻ and 6 ⁺ levels; β feeding from 4 ⁺ , from ²³⁴ Pa g.s.
2068.81 11	3,4,5+	В		J ^{π} : γ rays to 3 ⁺ and 4 ⁺ states; β feeding from 4 ⁺ , ²³⁴ Pa ground state.
2095.8			I	
2097.4			Н	
2101.43 9	5+	В		J ^{π} : γ -ray transitions to 4 ⁻ and 7 ⁺ levels.
2115.66 11	4+	В		J^{π} : γ -ray transitions to 2^+ and 6^+ states.
2144.01 9	3+,4+	В	I	J^{π} : γ -ray transitions to 2^+ and 5^+ .
2163.3			I	
2184.1			I	
2213.7			I	
2464.0 18	20^{+}	E	K	
2889.5 18	22^{+}	E	K	
3338.5 21	24+	E	K	
3807.5 23	26+	E	K	
4296.5 25	(28^{+})	E	K	
4807?	(30^{+})		K	

[†] The energies of levels deexcited by γ rays have been deduced by evaluators from a least-squares fit to adopted γ -ray energies. Levels seen in ²³⁷Np(p, α) reaction are assumed to include more than a single state; therefore, no identification of the levels observed in this reaction with those from other sources has been made here.

[‡] J^{π} assignments from (d,p), (d,t) reaction data are based on spectroscopic factors (ratio of observed to calculated cross sections) at 90° and 125°; assignments from (d,d') inelastic scattering are based on intensity patterns, ratios of cross sections at 90° and 125°, and β (EL) values deduced from (observed cross section)/ (calculated DWBA cross section) ratios. See sections for these reactions for more detail.

- [#] Band(A): $K^{\pi}=0^{-}$ octupole-vibrational band.
- [@] Band(B): $K^{\pi}=0^+ \beta$ -vibrational band.
- [&] Band(C): $K^{\pi}=2^+ \gamma$ -vibrational band. Squared amplitude of $\nu\nu$ 5/2[633],1/2[631] was obtained as 0.37 7 from (d,p) data, squared amplitude of $\nu\nu$ 7/2[743],3/2[761] was obtained as 0.27 14 from (d,t) data by 1968Bj05. See 1965Be40 and 1975Iv03 for the calculated $\nu\nu$ and $\pi\pi$ wave-function amplitudes in γ -vibrational state.
- ^{*a*} Band(D): $K^{\pi}=2^{-}$ octupole-vibrational band. Squared amplitude of $\nu\nu$ 7/2[743],3/2[631] was obtained as 0.58 *10* from (d,t) data by 1968Bj05. See 1975Iv05 for the calculated $\pi\pi$ and $\nu\nu$ wave-function amplitudes.
- ^{*b*} Band(E): $K^{\pi}=0^+$ band.
- ^{*c*} Band(F): $K^{\pi}=2^+$ band. Squared amplitude of $\nu\nu$ 5/2[633],1/2[631] was obtained as 0.30 7 from (d,p) data by 1968Bj05. Two phonon, $(\beta+\gamma)$ vibrational character was suggested by 1968Bj05 on the basis of strong γ -ray feedings to β and γ -vibrational bands.
- ^d Band(G): $K^{\pi}=(0^{-})$ band. From (d,d') data, 1973Bo27 deduced that it was strongly collective.
- ^{*e*} Band(H): $K^{\pi}=6^{-}$ band: Configuration=(($\nu 7/2(743)$)($\nu 5/2(633)$).
- ^{*f*} Band(I): $K^{\pi}=1^{-}$ band: Configuration=(($\nu 7/2(743)$)($\nu 5/2(633)$) The amplitude square of this configuration in a probable octupole vibration was deduced by 1968Bj05 from (d,t) data to be 100% 20.
- ^{*g*} Band(J): $K^{\pi}=3^{+}$ band: Configuration=(($\nu 5/2(633)$)($\nu 1/2(631)$).
- ^{*h*} Band(K): $K^{\pi}=5^+$ band: Configuration=(($\nu 5/2(622)$)($\nu 5/2(633)$).
- ^{*i*} Band(L): K=1 state: Configuration= $((\pi 3/2(651))(\pi 5/2(642)))$.
- ^{*j*} Band(M): $K^{\pi}=5^{-}$ band: Configuration=(($\nu 7/2(743)$)($\nu 3/2(631)$).
- ^k Band(N): $K^{\pi}=3^{-}$ band: Configuration=((π 5/2(642))(π 1/2(530)) Configuration was proposed by 1968Bj06 from ²³⁴Pa g.s. β decay.
- ^{*l*} Band(O): $K^{\pi}=4^+$ band: Configuration= $((\nu 5/2(633))(\nu 3/2(631)) + ((\pi 3/2[631])(\pi 5/2[642]))$ Configuration was proposed by 1968Bj06 on the bases of strong M1 transition to K=3 $\nu\nu$ 5/2[633],1/2[631] band and of β^- feeding from ²³⁴Pa g.s.
- ^{*m*} Band(P): $K^{\pi} = 4^+$ band: Configuration= $((\nu 7/2(743))(\nu 1/2(501)))$.
- ^{*n*} Band(Q): $K^{\pi}=3^{+}\pi\pi 1/2[530]$, 5/2[525] configuration was suggested by 1986Ar05 from two-quasiparticle states' energy

²³⁴U Levels (continued)

calculations of 1964So02.

^o Band(R): $K^{\pi}=3^+$ band: Configuration=((ν 7/2(743))(ν 1/2(501)) J and configuration assignments were made by 1968Bj05 from (d,t) data.

γ (²³⁴U)

For theoretical discussions and calculations of B(E2) values for γ rays deexciting 2⁺ states of the γ - vibrational, β -vibrational and g.s. bands, see 1985Zh08.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	$\alpha^{\#}$	$I_{(\gamma+ce)}$	Comments
43.4981	2+	43.498 1		0.0	0+	E2	713		α (L)=520 8; α (M)=143.5 20; α (N+)=49.3 7 α (N)=38.9 6; α (O)=8.91 13; α (P)=1.441 21; α (Q)=0.00339 5 P(E2)(Ww)=226.10
143.352	4+	99.853 <i>3</i>		43.4981	2+	E2	13.42		$\begin{array}{l} \alpha(L) = 9.77 \ 14; \ \alpha(M) = 2.71 \ 4; \ \alpha(N+) = 0.933 \ 13 \\ \alpha(N) = 0.736 \ 11; \ \alpha(O) = 0.1691 \ 24; \ \alpha(P) = 0.0277 \ 4; \\ \alpha(O) = 0.0001000 \ 16 \end{array}$
296.072	6+	152.720 2		143.352	4+	E2	2.14		$\alpha(\text{Q}) = 0.000109916$ $\alpha(\text{K}) = 0.217 \ 3; \ \alpha(\text{L}) = 1.404 \ 20; \ \alpha(\text{M}) = 0.388 \ 6; \ \alpha(\text{N}+) = 0.1338 \ 19$ $\alpha(\text{N}) = 0.1055 \ 15; \ \alpha(\text{O}) = 0.0243 \ 4; \ \alpha(\text{P}) = 0.00402 \ 6;$
497.04	8+	200.97 3		296.072	6+	E2	0.734		$\begin{array}{l} \alpha(Q) = 2.59 \times 10^{-4} \\ \alpha(K) = 0.1534 \ 22; \ \alpha(L) = 0.424 \ 6; \ \alpha(M) = 0.1166 \ 17; \\ \alpha(N+) = 0.0402 \ 6 \\ \alpha(N) = 0.0317 \ 5; \ \alpha(O) = 0.00731 \ 11; \ \alpha(P) = 0.001223 \ 18; \\ \alpha(O) = 1.237 \times 10^{-5} \ 18 \end{array}$
741.2	10^{+}	244 2 5		497 04	8+				$u(Q) = 1.257 \times 10^{-16}$
786.288	1-	742.81 3	100 2	43.4981	2+	E1	0.00636		α (K)=0.00518 8; α (L)=0.000895 13; α (M)=0.000213 3; α (N+)=7.37×10 ⁻⁵ 11
									$\alpha(N)=5.71\times10^{-5} 8; \alpha(O)=1.378\times10^{-5} 20; \alpha(P)=2.61\times10^{-6} 4; \alpha(O)=1.95\times10^{-7} 3$
		786.27 3	58 2	0.0	0^+	(E1)	0.00573		$\alpha(\text{K})=0.00467\ 7;\ \alpha(\text{L})=0.000804\ 12;\ \alpha(\text{M})=0.000191\ 3;$ $\alpha(\text{N}+)=6.61\times10^{-5}\ 10$
									α (N)=5.12×10 ⁻⁵ 8; α (O)=1.237×10 ⁻⁵ 18; α (P)=2.35×10 ⁻⁶ 4; α (Q)=1.766×10 ⁻⁷ 25
809.907	0^+	766.38 2	100.0 7	43.4981	2+	(E2)	0.0187		α (K)=0.01336 <i>19</i> ; α (L)=0.00396 <i>6</i> ; α (M)=0.001003 <i>14</i> ; α (N+)=0.000348 <i>5</i>
									$\alpha(N)=0.000271 \ 4; \ \alpha(O)=6.45\times10^{-5} \ 9; \ \alpha(P)=1.182\times10^{-5} \ 17; \ \alpha(Q)=6.25\times10^{-7} \ 9$
									B(E2)(W.u.)>0.067
		810.0 5		0.0	0^+	E0		2.7×10^2 10	
849.266	3-	705.9 1	90 5	143.352	4 ⁺				
051 74	a +	805.80 5	100 7	43.4981	2+ 0+	(50)	0(2.17		$D(EQ)(W_{1}) = 1.1, 10^{4}$
851.74	2+	(41.82 11)	0.24 12	809.907	0+	[E2]	863 17		B(E2)(W.u.)<1.1×10 ⁺ α (L)=630 <i>12</i> ; α (M)=174 <i>4</i> ; α (N+)=59.6 <i>12</i> α (N)=47.1 <i>9</i> ; α (O)=10.79 <i>21</i> ; α (P)=1.74 <i>4</i> ; α (Q)=0.00403 8 E _{γ} : this γ -ray transition was not observed; its existence has been inferred in 6 70-h ²³⁴ Pa β^- decay. E γ is from level scheme
		708.3 2	31 4	143.352	4+	[E2]	0.0219		B(E2)(W.u.)<1.0

9

							Adopted	Levels, Gai	mmas (continued)
								γ (²³⁴ U) (co	ontinued)
E_i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ	α #	Comments
	-				-				$\alpha(K)=0.01537\ 22;\ \alpha(L)=0.00489\ 7;\ \alpha(M)=0.001246\ 18;\ \alpha(N+)=0.000432\ 6$ $\alpha(N)=0.000337\ 5;\ \alpha(O)=8.00\times10^{-5}\ 12;\ \alpha(P)=1.458\times10^{-5}\ 21;$ $\alpha(Q)=7.28\times10^{-7}\ 11$
851.74	2+	808.20 10	60.6	43.4981	2+	E0+E2	0.45 9	4.2	B(E2)(W.u.) < 0.23
		851.70 <i>10</i>	100 6	0.0	0+	[E2]		0.01513	B(E2)(W.u.)<1.3 α (K)=0.01109 16; α (L)=0.00302 5; α (M)=0.000759 11; α (N+)=0.000263 4
926.720	2+	783.4 1	3.1 3	143.352	4+	[E2]		0.0179	$\begin{aligned} \alpha(N) &= 0.000205 \ 3; \ \alpha(O) &= 4.89 \times 10^{-5} \ 7; \ \alpha(P) &= 9.03 \times 10^{-5} \ 13; \\ \alpha(Q) &= 5.10 \times 10^{-7} \ 8 \\ B(E2)(W.u.) &= 0.28 \ 5 \\ \alpha(K) &= 0.01285 \ 18; \ \alpha(L) &= 0.00374 \ 6; \ \alpha(M) &= 0.000946 \ 14; \ \alpha(N+) &= 0.000328 \ 5 \\ \alpha(N) &= 0.000255 \ 4; \ \alpha(O) &= 6.08 \times 10^{-5} \ 9; \ \alpha(P) &= 1.116 \times 10^{-5} \ 16; \end{aligned}$
		883.24 4	100 7	43.4981	2+	E2		0.01409	$\alpha(Q)=5.99\times10^{-7} \ 9$ B(E2)(W.u.)=4.9 8 $\alpha(K)=0.01040 \ 15; \ \alpha(L)=0.00276 \ 4; \ \alpha(M)=0.000692 \ 10; \ \alpha(N+)=0.000240 \ 4$ $\alpha(N)=0.000187 \ 3; \ \alpha(O)=4.46\times10^{-5} \ 7; \ \alpha(P)=8.25\times10^{-6} \ 12; \ \alpha(O)=4.76\times10^{-7} \ 7$
		926.72 10	75 4	0.0	0+	(E2)		0.01284	B(E2)(W.u.)=2.9 5 α (K)=0.00956 14; α (L)=0.00245 4; α (M)=0.000613 9; α (N+)=0.000213 3 α (N)=0.0001653 24; α (O)=3.95×10 ⁻⁵ 6; α (P)=7.34×10 ⁻⁶ 11; α (O)=4.34×10 ⁻⁷ 6
947.64	4+	804.4 <i>3</i> 904.37 <i>15</i>	100 <i>34</i> 55 <i>4</i>	143.352 43.4981	$\frac{4^{+}}{2^{+}}$	E0+E2		0.37	α : deduced in 6.70 ²³⁴ Pa β^- decay.
962.546	5-	666.5 1	62 4	296.072	$\frac{2}{6^{+}}$				
968.425	3+	819.2 <i>1</i> 825.1 <i>2</i> 925.0 <i>1</i>	100 6 24 2 100 10	143.352 143.352 43.4981	4^+ 4^+ 2^+				
989.430	2-	62.70 <i>1</i>	12 3	926.720	2 ⁺ 2 ⁺	E1		0.426	α (L)=0.320 5; α (M)=0.0791 11; α (N+)=0.0266 4 α (N)=0.0209 3; α (O)=0.00481 7; α (P)=0.000795 12; α (Q)=3.22×10 ⁻⁵ 5 B(E1)(Wu)=7.0×10 ⁻⁵ 19
		140.15 2	3.8 4	849.266	3-	M1+E2	1.2 6	5.3 18	$\alpha(K) = 2.9 \ 22; \ \alpha(L) = 1.76 \ 25; \ \alpha(M) = 0.47 \ 9; \ \alpha(N+) = 0.16 \ 3 \ \alpha(N) = 0.127 \ 23; \ \alpha(O) = 0.030 \ 5; \ \alpha(P) = 0.0051 \ 6; \ \alpha(Q) = 0.00015 \ 10 \ B(M1)(W \ \mu) = 0.00010 \ 8; \ B(E2)(W \ \mu) = 2.2 \ 13$
		203.12 3	9.2 8	786.288	1-	M1+E2	1.5 4	1.4 4	B(E2)(W.u.)=1.0 3; B(M1)(W.u.)=6×10 ⁻⁵ 3 α (K)=0.8 4; α (L)=0.422 10; α (M)=0.1113 16; α (N+)=0.0385 6 α (N)=0.0301 5; α (O)=0.00708 L; α (P)=0.00124 4; α (O)=4.3×10 ⁻⁵ 15
		946.00 <i>3</i>	100 7	43.4981	2+	(E1)		0.00412	$\alpha(K)=0.00337 5; \alpha(L)=0.000571 8; \alpha(M)=0.0001257 9; \alpha(K)=0.0001355 19; \alpha(K)=4.69\times10^{-5} 7$ $\alpha(N)=3.63\times10^{-5} 5; \alpha(O)=8.78\times10^{-6} 13; \alpha(P)=1.675\times10^{-6} 24;$

 $^{234}_{92}\mathrm{U}_{142}\text{--}10$

From ENSDF

²³⁴₉₂U₁₄₂-10

	Adopted Levels, Gammas (continued)												
	γ ⁽²³⁴ U) (continued)												
E _i (level)	\mathbf{J}_i^{π}	Eγ	$\mathrm{I}_{\gamma}^{\dagger}$	E_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ	α [#]	Comments				
									$\alpha(Q)=1.285\times10^{-7}$ 18				
	.+	- + 0 < () = 0		0.40	a +				$B(E1)(W.u.)=1.69\times10^{-7}\ 20$				
1023.77	4'	54.96° 10	1 83 17	968.425	3' 6+								
		27.8 Z	~100&	142 252	0 4+								
		000.3 1	≈ 100	145.552	4 2+								
1023.8	12^{+}	282.6.5	≈28	741 2	$\frac{2}{10^{+}}$								
1023.826	3-	34.30 4	0.09 3	989.430	2-	(E2(+M1))		1.2×10^3 11	$\alpha(L)=9.E+2 8; \alpha(M)=2.4\times10^2 22; \alpha(N+)=8.E+1 8$				
									α (N)=6.E+1 6; α (O)=15 14; α (P)=2.4 22; α (Q)=0.015 5				
		54.96 ^{@a} 10	≤0.22	968.425	3+								
		97.17 10	5.6 20	926.720	2^{+}								
		174.55 3	3.9 5	849.266	3-								
		880.5 ^{&} 1	≈100 ^{&}	143.352	4+								
		980.3 ^{&} 1	≈63 ^{&}	43.4981	2^{+}								
1044.536	0^{+}	192.91 ^{&} 7	0.067 ^{&} 20	851.74	2^{+}								
		234.6 2		809.907	0^{+}	EO			Total Ice=10.4 12.				
		258.23 7	8.6 5	786.288	1-	(E1)		0.0548	$\alpha(K)=0.0434$ 6; $\alpha(L)=0.00859$ 12; $\alpha(M)=0.00207$ 3; $\alpha(N+)=0.000712$ 10				
									α (N)=0.000554 8; α (O)=0.0001321 19;				
									$\alpha(P)=2.42\times10^{-5} 4; \alpha(Q)=1.499\times10^{-6} 21$				
		1001.03 3	100 3	43.4981	2^{+}	E2		0.01107	α (K)=0.00835 <i>12</i> ; α (L)=0.00204 <i>3</i> ; α (M)=0.000507 <i>8</i> ;				
									$\alpha(N+)=0.0001760.25$				
									$\alpha(N) = 0.000136/20; \alpha(O) = 3.28 \times 10^{-5} 5;$ $\alpha(D) = 6.10 \times 10^{-6} 0; \alpha(O) = 2.76 \times 10^{-7} 6$				
1060 281	4-	15 15 5	10.6	1022 826	2-	M1 + E2	081	2.5×10^2 14	$\alpha(P)=0.10\times10^{-9}$; $\alpha(Q)=5.70\times10^{-9}$ 0 $\alpha(L)=1.0\times10^{2}$ 10: $\alpha(M)=5$ E1.2: $\alpha(N)=-17.10$				
1009.281	4	45.45 5	19.0	1025.820	3	W11+E2	0.8 4	2.3×10 14	$\alpha(N)=14.8; \alpha(O)=3.1.17; \alpha(P)=0.5.3; \alpha(O)=0.0063.15$				
		79.84 2	43 15	989.430	2^{-}	E2		38.4	α (L)=28.0 4; α (M)=7.76 11; α (N+)=2.67 4				
									α (N)=2.11 3; α (O)=0.483 7; α (P)=0.0788 11;				
		100.80.2	06.15	069 425	2+				$\alpha(Q) = 0.000258 \ 4$				
		100.89 2	80 15 25 8	968.425	5-								
		220.00 8	100 15	849.266	3-	(M1)		2.37	$\alpha(K) = 1.89 3$; $\alpha(L) = 0.366 6$; $\alpha(M) = 0.0886 13$;				
			100 10	0171200	0	(111)		2107	$\alpha(N+)=0.0309\ 5$				
									α (N)=0.0239 4; α (O)=0.00581 9; α (P)=0.001120 16; α (Q)=8.93×10 ⁻⁵ 13				
		925.9 2	12×10 ² 9	143.352	4+								
1085.26	2^{+}	233.6 ^{<i>a</i>} 2		851.74	2+								
		235.9 <i>3</i>	3.4 13	849.266	3-								

 $^{234}_{92}\mathrm{U}_{142}\text{--}11$

L

From ENSDF

 $^{234}_{92}\mathrm{U}_{142}\text{-}11$

	Adopted Levels, Gammas (continued)											
						$\gamma(2)$	²³⁴ U) (continu	ued)				
E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α #	Comments				
1085.26	2+	299.1 2	10 3	786.288	1-							
		941.94 10	100 5	143.352	4+							
		1041.7 2	48 4	43.4981	2^+							
1000.80	5+	1085.4 2	20.6	0.0	0^{+}							
1090.89	2	794.9 Z 047 7 2	41.0	290.072	0 · /+							
1096 12	6+	799 7 2	100 10	296 072		E0+E2						
10/0.12	0	952.7 1		143.352	4+	LOTEL						
1125.28	7^{-}	628.1 <i>1</i>	66 12	497.04	8^{+}							
		829.3 2	100 30	296.072	6^{+}							
1126.626	2^{+}	137.23 5	5.3 21	989.430	2-							
		199.95 5	14 5	926.720	2+	(E0+E2+M1)	1.9 12	$\alpha(K)=1.3 \ I2; \ \alpha(L)=0.456 \ 25; \ \alpha(M)=0.1176 \ 23; \ \alpha(N+)=0.0408 \ 7 \ \alpha(N)=0.0318 \ 8; \ \alpha(O)=0.00754 \ I3; \ \alpha(P)=0.00136 \ I1; \ \alpha(Q)=6.E-5 \ 6$				
		275.04 [@] 10	35 7	851.74	2^{+}							
		316.7 1	20 2	809.907	0^{+}							
		340.2 1	8.0 17	786.288	1-		0.0217					
		1083.2 1	100 7	43.4981	21	(M1)	0.0317	$\alpha(\mathbf{K})=0.0254 \ 4; \ \alpha(\mathbf{L})=0.004777; \ \alpha(\mathbf{M})=0.00114776; \ \alpha(\mathbf{N}+)=0.0004006 \ \alpha(\mathbf{N})=0.0003095; \ \alpha(\mathbf{O})=7.51\times10^{-5}11; \ \alpha(\mathbf{P})=1.450\times10^{-5}21; \ \alpha(\mathbf{Q})=1.163\times10^{-6}17$				
		1126.8 <i>1</i>	59 7	0.0	0^+							
1127.552	5-	58.20 6	0.21 7	1069.281	4-	(E2)	174	α (L)=126.9 <i>19</i> ; α (M)=35.1 <i>6</i> ; α (N+)=12.06 <i>18</i> α (N)=9.52 <i>15</i> ; α (O)=2.18 <i>4</i> ; α (P)=0.354 <i>6</i> ; α (Q)=0.000954 <i>14</i>				
		103.77 2	5.7 8	1023.826	3-	(E2)	11.22	α (L)=8.17 <i>12</i> ; α (M)=2.27 <i>4</i> ; α (N+)=0.780 <i>11</i> α (N)=0.615 <i>9</i> ; α (O)=0.1414 <i>20</i> ; α (P)=0.0232 <i>4</i> ; α (Q)=9.56×10 ⁻⁵ <i>14</i>				
		164.94 5	1.2 5	962.546	5-							
		278.3 1	1.0 3	849.266	3-							
		831.5 1	100 5	296.072	6^+							
1165 44	2+	984.2 <i>I</i>	39 4	143.352	4' 2+	E0 · E2 · M1	20.12	(W) 1 4 12; (U) 0 492 21; (M) 0 124 4; (M)) 0.0422 11				
1165.44	3	196.80 3	29 9	968.425	3.	E0+E2+M1	2.0 13	$\alpha(K)=1.4$ 13; $\alpha(L)=0.485$ 21; $\alpha(M)=0.124$ 4; $\alpha(N+)=0.0452$ 11 $\alpha(N)=0.0337$ 11; $\alpha(O)=0.00798$ 12; $\alpha(P)=0.00144$ 10; $\alpha(Q)=7.E-5$ 6 α : deduced in ²³⁴ Pa g.s. decay.				
		313.5 1	42 5	851.74	2+							
		1021.8 2	58 13	143.352	4^+	1.41	0.0200	$(\mathbf{X}) = 0.0002 \mathbf{A} = (\mathbf{X}) = 0.00424 \mathbf{A} = (\mathbf{A}\mathbf{A}) = 0.001045 \mathbf{A}\mathbf{B} = (\mathbf{A}\mathbf{A}) = 0.000245 \mathbf{A}$				
		1121./ 1	100 13	43.4981	21	MI	0.0289	$\alpha(\mathbf{K})=0.0232 \ 4; \ \alpha(\mathbf{L})=0.00434 \ 6; \ \alpha(\mathbf{M})=0.001045 \ 15; \ \alpha(\mathbf{N}+)=0.000365 \ 6$ $\alpha(\mathbf{N})=0.000281 \ 4; \ \alpha(\mathbf{O})=6.84\times10^{-5} \ 10; \ \alpha(\mathbf{P})=1.321\times10^{-5} \ 19; $ $\alpha(\mathbf{Q})=1.060\times10^{-6} \ 15; \ \alpha(\mathbf{IPF})=6.86\times10^{-7} \ 1$				
1172.043	6+	675.1 <i>1</i>	4.0 4	497.04	8+							
		876.0 1	100.0 9	296.072	6+	(E2)	0.01432	$\alpha(K)=0.01055\ 15;\ \alpha(L)=0.00282\ 4;\ \alpha(M)=0.000706\ 10;\ \alpha(N+)=0.000245\ 4$				
								$ \begin{aligned} \alpha(N) = 0.000191 \ 3; \ \alpha(O) = 4.55 \times 10^{-5} \ 7; \ \alpha(P) = 8.42 \times 10^{-6} \ 12; \\ \alpha(Q) = 4.83 \times 10^{-7} \ 7 \end{aligned} $				

 $^{234}_{92}\mathrm{U}_{142}$ -12

L

$\gamma(^{234}\text{U})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ	α #	Comments
1172.043	6+	1028.7 <i>1</i>	22.4 13	143.352	4+				
1174.1	$(1,2^{+})$	184.7 5	90 8	989.430	2^{-}				
		387.6 8	50 9	786.288	1-				
		1174.2 10	100 10	0.0	0^{+}				
1194.748	6-	67.10 7	1.1 4	1127.552	5-	M1+E2	1.2 3	58 11	α (L)=42 8; α (M)=11.6 22; α (N+)=4.0 8 α (N)=3.1 6; α (O)=0.72 14; α (P)=0.120 21; α (Q)=0.0014 4
		69.46 5	0.54 23	1125.28	7^{-}				
		125.46 <i>1</i>	24 3	1069.281	4-	E2		4.89	$\alpha(K)=0.216 \ 3; \ \alpha(L)=3.41 \ 5; \ \alpha(M)=0.945 \ 14; \ \alpha(N+)=0.325 \ 5 \\ \alpha(N)=0.257 \ 4; \ \alpha(O)=0.0590 \ 9; \ \alpha(P)=0.00971 \ 14; \ \alpha(Q)=4.98\times10^{-5} \\ 7 \\ 7 \\ \end{array}$
		232.21 3	5.4 10	962.546	5-				
		898.67 5	100 7	296.072	6+				
1214.71	4+	267.12 5	100 12	947.64	4^{+}				
		365.0 [@] 3	10 4	849.266	3-				
		918.4 <i>1</i>	54 6	296.072	6^{+}				
		1171.3 <i>I</i>	51 6	43.4981	2^{+}				
1237.256	1-	192.91 <mark>&</mark> 7	1.1 ^{&} 3	1044.536	0^{+}				
		247.79 7	1.81 12	989.430	2^{-}				
		310.52 10	0.65 7	926.720	2^{+}				
		387.94 6	3.46 20	849.266	3-				
		427.4 4	0.15 4	809.907	0^+	M1 . D2	0.70	0.041	$(T_{2}) = 0.107.2 (T_{2}) = 0.0400.2 (M_{2}) = 0.0000.14 (M_{2}) = 0.00241$
		450.93 4	20.7 16	786.288	1-	M1+E2	0.70	0.241	$\alpha(\mathbf{K})=0.1873; \ \alpha(\mathbf{L})=0.04006; \ \alpha(\mathbf{M})=0.0098014; \ \alpha(\mathbf{N}+)=0.003415$
									$ \begin{aligned} \alpha(N) = 0.00264 \ 4; \ \alpha(O) = 0.000638 \ 9; \ \alpha(P) = 0.0001213 \ 17; \\ \alpha(Q) = 8.79 \times 10^{-6} \ 13 \end{aligned} $
		1193.77 3	100 4	43.4981	2+	E1		0.00277	$\alpha(K)=0.00226\ 4;\ \alpha(L)=0.000377\ 6;\ \alpha(M)=8.92\times10^{-5}\ 13;\ \alpha(N+)=4.12\times10^{-5}\ 6$
									$\alpha(N)=2.39\times10^{-5}$ 4; $\alpha(O)=5.80\times10^{-6}$ 9; $\alpha(P)=1.109\times10^{-6}$ 16; $\alpha(O)=8.70\times10^{-8}$ 13; $\alpha(PE)=1.027\times10^{-5}$ 15
		1237 22 1	3878	0.0	0+	F1		0.00262	$\alpha(\mathbf{X}) = 0.00213 3 \cdot \alpha(\mathbf{L}) = 0.000354 5 \cdot \alpha(\mathbf{M}) = 8.38 \times 10^{-5} 12$
		1237.22 4	50.7 0	0.0	0	LI		0.00202	$\alpha(\mathbf{N}_{-}) = 5.00215 \text{J}, \alpha(\mathbf{L}_{-}) = 0.000354 \text{J}, \alpha(\mathbf{M}_{-}) = 0.308 \text{H}^{-1} \text{I}^{-1} \text{I}^{-5} \text{R}^{-1}$
									$\alpha(N) = 2.5 \times 10^{-5} 4.5 \alpha(O) = 5.44 \times 10^{-6} 8.5 \alpha(D) = 1.042 \times 10^{-6} 15$
									$\alpha(\Omega) = 2.25 \times 10^{-8} 42$; $\alpha(\Omega) = 5.44 \times 10^{-6} 3$; $\alpha(\Omega) = 8.20 \times 10^{-8} 42$; $\alpha(\Omega) = 2.21 \times 10^{-5} 3$
1261 782	7+	764.8.2	41 9	497 04	8+				$u(\chi) = 0.20 \times 10^{-12}, u(\Pi \Gamma) = 2.21 \times 10^{-5}$
1201.702	/	965.8 1	100 7	296.072	6 ⁺				
1274.29	(5^{+})	978.2 3	100 /	296.072	6+				
1277.461	7-	149.88 3	8 <i>3</i>	1127.552	5-				
		780.4 2	100 5	497.04	8^{+}				
		981.6 <i>3</i>	80 <i>23</i>	296.072	6^{+}				
1292.75	8+	795.7 2		497.04	8^{+}	E0+E2			

13

From ENSDF

					Adopte	ed Levels, Gam	<mark>nmas</mark> (contin	nued)
						γ ⁽²³⁴ U) (cor	ntinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\dagger}	E_f J	\int_{f}^{π} Mult. [‡]	δ	α #	Comments
1312.18	3-	343.8 2	82 18	968.425 3	+			
1335.69	<u>0</u> -	365.0 [@] 3 385.4 1 (594 7)	100 25	947.64 4 ⁻ 926.720 2 ⁻ 741 2 10	+ + 0 ⁺			
1000.01	-	838.5 5		497.04 8	+			
1340.5	14^{+}	316.7		1023.8 12	2+			
1341.33	(6^+)	379.1 <i>I</i> 1044.4 2	100 25 ≈75	962.546 5 296.072 6 407.04	- + +			
1421.257	(8) 6 ⁻	143.78 2	7.6 8	1277.461 7 ⁻	- (M1+E2)	≈1.0	≈5.31	B(M1)(W.u.) $\approx 1.6 \times 10^{-9}$; B(E2)(W.u.) $\approx 2.3 \times 10^{-5}$ α (K) ≈ 3.24 ; α (L) ≈ 1.532 ; α (M) ≈ 0.403 ; α (N+) ≈ 0.1394 α (N) ≈ 0.1091 ; α (O) ≈ 0.0256 ; α (P) ≈ 0.00450 ; α (O) ≈ 0.0001658
		159.48 2	15.4 18	1261.782 7 ⁻	+ [E1]		0.1676	$\alpha(\mathbf{K})=0.1303 \ I9; \ \alpha(\mathbf{L})=0.0282 \ 4; \ \alpha(\mathbf{M})=0.00684 \ I0; \ \alpha(\mathbf{N}+)=0.00234 \ 4 \ \alpha(\mathbf{N})=0.00182 \ 3; \ \alpha(\mathbf{O})=0.000431 \ 6; \ \alpha(\mathbf{P})=7.70\times10^{-5} \ I1; \ (0.422\times10^{-6}) \ (0$
								$\alpha(Q) = 4.23 \times 10^{-6} \ b$
		226.50 <i>3</i>	100 8	1194.748 6	- M1+E2	1.0 +3-1	1.33 22	B(E1)(W.0.)=3.8×10 ⁻¹⁴ o $\alpha(K)=0.93\ 21;\ \alpha(L)=0.297\ 12;\ \alpha(M)=0.0759\ 18;\ \alpha(N+)=0.0263\ 7$ $\alpha(N)=0.0205\ 5;\ \alpha(O)=0.00488\ 14;\ \alpha(P)=0.00089\ 4;$ $\alpha(O)=4.6\times10^{-5}\ 10$
		249.22 1	59 8	1172.043 6	+ E1		0.0594	B(M1)(W.u.)= 5.4×10^{-9} <i>19</i> ; B(E2)(W.u.)= 3.1×10^{-5} <i>11</i> B(E1)(W.u.)= 3.8×10^{-11} <i>7</i> α (K)= 0.0470 <i>7</i> ; α (L)= 0.00935 <i>13</i> ; α (M)= 0.00226 <i>4</i> ;
								$\alpha(N+)=0.000775717$ $\alpha(N)=0.000604\ 9;\ \alpha(O)=0.0001437\ 21;\ \alpha(P)=2.63\times10^{-5}\ 4;$ $\alpha(Q)=1.616\times10^{-6}\ 23$
		293.79 5	71 5	1127.552 5	- M1+E2	1.7 +6-3	0.42 9	$ \begin{aligned} &\alpha(\mathbf{K}) = 0.28 \ 8; \ \alpha(\mathbf{L}) = 0.109 \ 8; \ \alpha(\mathbf{M}) = 0.0283 \ 16; \ \alpha(\mathbf{N}+) = 0.0098 \ 6 \\ &\alpha(\mathbf{N}) = 0.0076 \ 4; \ \alpha(\mathbf{O}) = 0.00181 \ 11; \ \alpha(\mathbf{P}) = 0.000323 \ 24; \\ &\alpha(\mathbf{Q}) = 1.4 \times 10^{-5} \ 4 \end{aligned} $
		295.91 8	3.4 5	1125.28 7	- [M1+E2]		0.6 5	B(M1)(W.u.)=9.E-10 5; B(E2)(W.u.)=9.0×10 ⁻⁶ 21 B(M1)(W.u.)=8.0×10 ⁻¹¹ 14; B(E2)(W.u.)=2.7×10 ⁻⁷ 5 α (K)=0.5 4; α (L)=0.12 4; α (M)=0.031 8; α (N+)=0.011 3 α (N)=0.0084 20; α (O)=0.0020 6; α (P)=0.00037 12; α (O)=2.2×10 ⁻⁵ 18
		330.40 ^{&} 5	≈7 ^{&}	1090.89 5	+ [E1]		0.0318	B(E1)(W.u.)≈1.9×10 ⁻¹² α (K)=0.0254 4; α (L)=0.00484 7; α (M)=0.001165 17; α (N+)=0.000401 6 α (N)=0.000312 5; α (O)=7.45×10 ⁻⁵ 11: α (P)=1.379×10 ⁻⁵ 20:
		351.9 <i>1</i>	9.8 8	1069.281 4 ⁻	- E2		0.1175	$\alpha(Q)=9.01\times10^{-7}$ 13 $\alpha(K)=0.0555$ 8; $\alpha(L)=0.0455$ 7; $\alpha(M)=0.01222$ 18;

From ENSDF

L

E	E _i (level)	J_i^{π}								
E	E _i (level)	\mathbf{J}_i^{π}					-	γ(²³⁴ U) (continued)	
			Eγ	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ	α #	Comments
14	421.257	6-	397.7 3	0.63 15	1023.77	4+	[M2]		1.349	$\begin{array}{l} \alpha(\mathrm{N}+)=0.00422\ 6\\ \alpha(\mathrm{N})=0.00331\ 5;\ \alpha(\mathrm{O})=0.000773\ 11;\ \alpha(\mathrm{P})=0.0001335\ 19;\\ \alpha(\mathrm{Q})=3.15\times10^{-6}\ 5\\ \mathrm{B}(\mathrm{E2})(\mathrm{W.u.})=6.8\times10^{-7}\ 8\\ \mathrm{B}(\mathrm{M2})(\mathrm{W.u.})=2.9\times10^{-6}\ 8\\ \alpha(\mathrm{K})=0.986\ 14;\ \alpha(\mathrm{L})=0.270\ 4;\ \alpha(\mathrm{M})=0.0687\ 10;\ \alpha(\mathrm{N}+)=0.0242\ 4\\ \alpha(\mathrm{N})=0.0187\ 3;\ \alpha(\mathrm{O})=0.00454\ 7;\ \alpha(\mathrm{P})=0.000864\ 13;\ \alpha(\mathrm{O})=6.46\times10^{-5} \end{array}$
			458.68 <i>5</i>	26.8 15	962.546	5-	M1+E2	1.4 4	0.14 5	10 $\alpha(K)=0.11 4; \ \alpha(L)=0.028 5; \ \alpha(M)=0.0071 11; \ \alpha(N+)=0.0025 4$ $\alpha(N)=0.0019 3; \ \alpha(O)=0.00046 8; \ \alpha(P)=8.5\times10^{-5} 15; \ \alpha(Q)=5.1\times10^{-6}$
			1125.2 1	8.5 17	296.072	6+	[E1]		0.00305	B(M1)(W.u.)= 1.2×10^{-10} 5; B(E2)(W.u.)= 3.3×10^{-7} 8 α (K)= 0.00250 4; α (L)= 0.000418 6; α (M)= 9.91×10^{-5} 14; α (N+)= 3.56×10^{-5} 5 α (N)= 2.66×10^{-5} 4; α (O)= 6.43×10^{-6} 9; α (P)= 1.230×10^{-6} 18;
			1277.7 2	1.05 <i>17</i>	143.352	4+	[M2]		0.0473	$\alpha(Q)=9.60\times10^{-6} \ 14; \ \alpha(IPF)=1.278\times10^{-6} \ 19$ B(E1)(W.u.)=6.0×10 ⁻¹⁴ \ 13 B(M2)(W.u.)=1.4×10 ⁻⁸ \ 3 $\alpha(K)=0.0370 \ 6; \ \alpha(L)=0.00771 \ 11; \ \alpha(M)=0.00188 \ 3; \ \alpha(N+)=0.000665 \ 10$ $\alpha(N)=0.000509 \ 8; \ \alpha(O)=0.0001237 \ 18; \ \alpha(P)=2.38\times10^{-5} \ 4; \ \alpha(Q)=1.86\times10^{-6} \ 3; \ \alpha(IPF)=6.75\times10^{-6} \ 10$
14	435.380	1-	197.91 <i>15</i> 445.91 <i>10</i> 625.66 7 649.12 ^{&} <i>10</i>	0.28 7 0.31 7 1.19 <i>11</i> 0.42 ^{&} 9	1237.256 989.430 809.907 786.288	1^{-} 2^{-} 0^{+} 1^{-}				
			1391.87 4	35.6 15	43.4981	2+	E1		0.00221	$\alpha(\mathbf{K})=0.001745\ 25;\ \alpha(\mathbf{L})=0.000288\ 4;\ \alpha(\mathbf{M})=6.82\times10^{-5}\ 10;\\ \alpha(\mathbf{N}+)=0.0001116\ 16\\ \alpha(\mathbf{N})=1.83\times10^{-5}\ 3;\ \alpha(\mathbf{O})=4.44\times10^{-6}\ 7;\ \alpha(\mathbf{P})=8.51\times10^{-7}\ 12;\\ \alpha(\mathbf{O})=6\ 76\times10^{-8}\ 10;\ \alpha(\mathbf{PE})=8\ 70\times10^{-5}\ 13$
			1435.36 <i>4</i>	100 4	0.0	0+	E1		0.00213	$\alpha(Q)=0.70\times10^{-1}10, \alpha(H1^{-})=0.79\times10^{-1}15^{-1}$ $\alpha(K)=0.001658\ 24; \ \alpha(L)=0.000274\ 4; \ \alpha(M)=6.47\times10^{-5}\ 9; \ \alpha(N+)=0.0001355\ 19$ $\alpha(N)=1.734\times10^{-5}\ 25; \ \alpha(O)=4.21\times10^{-6}\ 6; \ \alpha(P)=8.07\times10^{-7}\ 12; \ \alpha(Q)=6.43\times10^{-8}\ 0; \ \alpha(P)=0.0001130, 16$
14	447.52	5-	$275.04^{@}$ 10 320.4 1	100 12	1172.043 1127.552	6^+ 5 ⁻				$\alpha(Q)=0.43\times10^{-9}$ 9; $\alpha(IPP)=0.0001150$ 10
14	457.16	(2 ⁻)	468.0 ^{<i>@a</i>} 1 670.8 <i>10</i>	02 <i>18</i> 16 <i>4</i>	296.072 989.430 786.288	0 2 ⁻ 1 ⁻				

From ENSDF

 $^{234}_{92}\mathrm{U}_{142}$ -15

$\gamma(^{234}\text{U})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^{π}	Mult. [‡]	δ	α #	Comments
1457.16	(2^{-})	1414.0 4	100 5	43.4981	2+				
1486.16	(3-)	559.2 2	100 29	926.720	2+				
		1342.9 2	17 6	143.352	4+				
		1442.8 2	43 9	43.4981	2^{+}				
1496.111	3+	221.83 10	0.87 25	1274.29	(5^{+})				
		330.40 ^{&} 4	≈5.6 ^{&}	1165.44	3+	M1+E2	≈0.7	≈0.562	$\alpha(K) \approx 0.431; \ \alpha(L) \approx 0.0980; \ \alpha(M) \approx 0.0242; \ \alpha(N+) \approx 0.00842$ $\alpha(N) \approx 0.00653; \ \alpha(O) \approx 0.001574; \ \alpha(P) \approx 0.000297; \ \alpha(O) \approx 2.04 \times 10^{-5}$
		369.50 5	30.0 19	1126.626	2+	M1		0.565	$\alpha(K) = 0.4507; \ \alpha(L) = 0.086613; \ \alpha(M) = 0.02093; \ \alpha(N+) = 0.0072911$ $\alpha(K) = 0.005638; \ \alpha(O) = 0.00137020; \ \alpha(P) = 0.0002644;$ $\alpha(O) = 2.11 \times 10^{-5}3$
		426.95 5	5.5 4	1069.281	4-				
		472.3 1	4.4 3	1023.77	4+				
		506.75 5	15.6 10	989.430	2-				
		527.9 1	4.7 4	968.425	3+	(M1)		0.215	α (K)=0.1716 24; α (L)=0.0327 5; α (M)=0.00790 11; α (N+)=0.00275 4
									$\alpha(N)=0.00213 \ 3; \ \alpha(O)=0.000517 \ 8; \ \alpha(P)=9.98\times10^{-5} \ 14;$
		560 5 1	100 10	026 720	2+	M1		0.1754	$\alpha(\mathbf{Q}) = 7.90 \times 10^{-5} I2$ $\alpha(\mathbf{K}) = 0.1401, 20; \alpha(\mathbf{L}) = 0.0267, 4; \alpha(\mathbf{M}) = 0.00643, 0; \alpha(\mathbf{N}_{\perp}) = 0.00224$
		509.5 1	100 10	920.720	2	111		0.1754	$\begin{array}{c} a(\mathbf{K}) = 0.1401\ 20,\ a(\mathbf{L}) = 0.0207\ 4,\ a(\mathbf{M}) = 0.00043\ 9,\ a(\mathbf{M}+) = 0.00224 \\ 4 \\ \end{array}$
									α (N)=0.001732 25; α (O)=0.000421 6; α (P)=8.12×10 ⁻⁵ 12; α (Q)=6.48×10 ⁻⁶ 9
		646.5 1	1.37 13	849.266	3-				
		1352.9 <i>1</i>	14.0 7	143.352	4+	M1		0.01766	$\alpha(\mathbf{K})=0.01412\ 20;\ \alpha(\mathbf{L})=0.00263\ 4;\ \alpha(\mathbf{M})=0.000633\ 9;\ \alpha(\mathbf{N}+)=0.000276\ 4$
									$\alpha(N) = 0.000170324, \alpha(O) = 4.13 \times 10^{-0}, \alpha(F) = 6.01 \times 10^{-12},$ $\alpha(O) = 6.44 \times 10^{-7}, 0, \alpha(DE) = 5.40 \times 10^{-5}, 0$
		1452.7 <i>1</i>	9.7 7	43.4981	2+				$u(Q)=0.44\times10^{-5}$; $u(IPP)=3.49\times10^{-5}$
1500.99	(1)	649.0 ^{&} 10	13 ^{&} 3	851.74	2^{+}				
		691.08 10	100 10	809.907	0^{+}				
		1458.5 15	24 6	43.4981	2+				
	a (+	1501 ^{<i>a</i>} 2	≈16	0.0	0^+				
1502.38	3,4+	1359.0 1	100 14	143.352	4 ⁺				
1510.00	1	1458.9 1	60 14	43.4981	2+				
1510.23	I	1466.5 2	100 10	43.4981	2+				
1522.21	(4-)	1510.35 15	75 <i>10</i>	0.0	0				
1555.51	(4)	404.2 1	23 8	1009.281	4				
		343.8 I 1380.6 2	54 16	909.43U 143 352	∠ 4+				
1537 228	\mathcal{A}^+	372 0 1	34 3	145.552	+ 3+	$M1\pm F2$	<05	0.51.5	$\alpha(\mathbf{K}) = 0.40.4$; $\alpha(\mathbf{I}) = 0.080.5$; $\alpha(\mathbf{M}) = 0.0195.11$; $\alpha(\mathbf{N} + 1) = 0.0068.4$
1557.220	7	572.0 1	5 - 5	1103.77	5	14117122	<0.J	0.51 5	$\alpha(N)=0.0052 \ 3; \ \alpha(O)=0.00127 \ 8; \ \alpha(P)=0.000244 \ 16; \ \alpha(Q)=1.89 \times 10^{-5} \ 18$

 $^{234}_{92}\mathrm{U}_{142}$ -16

From ENSDF

 $^{234}_{92}\mathrm{U}_{142}$ -16

L

						Adopte	d Levels, G	ammas (continued)
							γ ⁽²³⁴ U) (continued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α #	Comments
1537.228	4+	409.8 1	9.3 9	1127.552	5-			
		446.6 [@] 1	3.1 3	1090.89	5^{+}			
		468.0 [@] 1	6.0 6	1069.281	4-			
		513.4 ^{&} 1	≈21 ^{&}	1023.826	3-			I _γ : 513.4γ has been assumed to be a doublet, feeding the 4 ⁺ and 3 ⁻ levels at 1023.7 and 1023.83 keV (both the 3 ⁺ , 5 ⁺ members of the $K^{\pi}=2^+$ band, and the 4 ⁻ , 5 ⁻ members of the $K^{\pi}=2^-$ band are populated from the 1537-keV level). See 6.70-h ²³⁴ Pa β^- decay data for the splitting of the measured intensity.
		513.4 ^{&} 1	≈11 <mark>&</mark>	1023.77	4^{+}			
		568.9 2	100 12	968.425	3+	M1	0.1759	α (K)=0.1404 20; α (L)=0.0268 4; α (M)=0.00645 9; α (N+)=0.00225 4 α (N)=0.001737 25; α (O)=0.000422 6; α (P)=8.15×10 ⁻⁵ 12; α (Q)=6.50×10 ⁻⁶ 10
		590.3 10	1.0 3	947.64	4+			$E\gamma$ =589.4 4 from adopted level energies.
		685.1 [@] 2		851.74	2^{+}			
		1241.2 <i>1</i>	6.3 6	296.072	6+	(E2)	0.00740	$\alpha(K)=0.00573 \ 8; \ \alpha(L)=0.001252 \ 18; \ \alpha(M)=0.000307 \ 5; \ \alpha(N+)=0.0001132 \ 16 \\ \alpha(N)=8.28\times10^{-5} \ 12; \ \alpha(O)=1.99\times10^{-5} \ 3; \ \alpha(P)=3.75\times10^{-6} \ 6; \ \alpha(Q)=2.52\times10^{-7} \\ 4; \ \alpha(IPF)=6.51\times10^{-6} \ 10 $
		1393.9 <i>1</i>	57 3	143.352	4+	M1	0.01634	$ \alpha(K) = 0.01304 \ 19; \ \alpha(L) = 0.00243 \ 4; \ \alpha(M) = 0.000585 \ 9; \ \alpha(N+) = 0.000279 \ 4 \\ \alpha(N) = 0.0001574 \ 22; \ \alpha(O) = 3.83 \times 10^{-5} \ 6; \ \alpha(P) = 7.39 \times 10^{-6} \ 11; \ \alpha(Q) = 5.95 \times 10^{-7} \\ 9; \ \alpha(IPF) = 7.52 \times 10^{-5} \ 11 $
		1493.6 <i>1</i>	2.9 3	43.4981	2^{+}			
1543.69	4+	474.2 2 575.5 1	21 6 15 5	1069.281 968.425	4- 3+			
		617.0 [@] 2	29 12	926.720	2^{+}			
		1247.8 2	12 3	296.072	6+			
		1400.3 1	100 12	143.352	4 ⁺			
1540 20	(5)	1500.0 2	6.5 18	43.4981	2+ 6+			
1348.28	(5)	432.43	100 51	1090.12	4-			
		4/8.6 2 1	65 27	206.072	4 6 ⁺			
1552.555	5+	131.30 /	100.0 15	1421.257	6 ⁻	E1	0.265	$B(E1)(Wu) = 2.8 \times 10^{-5} 4$
	-				-			$\alpha(K)=0.204 \ 3; \ \alpha(L)=0.0463 \ 7; \ \alpha(M)=0.01128 \ 16; \ \alpha(N+)=0.00384 \ 6 \ \alpha(N)=0.00300 \ 5; \ \alpha(O)=0.000706 \ 10; \ \alpha(P)=0.0001246 \ 18; \ \alpha(Q)=6.48\times10^{-6} \ 9$
		461.5 [@] 1	0.19 6	1090.89	5+	[E2,M1]	0.18 13	α (K)=0.14 <i>11</i> ; α (L)=0.032 <i>15</i> ; α (M)=0.008 <i>4</i> ; α (N+)=0.0028 <i>12</i> α (N)=0.0022 <i>9</i> ; α (O)=0.00052 <i>23</i> ; α (P)=0.00010 <i>5</i> ; α (Q)=7.E-6 <i>5</i>
		529.1 [@] 3	0.51 18	1023.77	4+	[E2,M1]	0.13 9	α (K)=0.10 8; α (L)=0.022 11; α (M)=0.0054 25; α (N+)=0.0019 9 α (N)=0.0015 7; α (O)=0.00035 17; α (P)=7.E-5 4; α (Q)=5.E-6 4
		584.1 <i>I</i>	0.97 12	968.425	3+	[E2]	0.0331	B(E2)(W.u.)= $3.3 \times 10^{-4} 6$ α (K)= $0.0217 3$; α (L)= $0.00845 12$; α (M)= $0.00219 3$; α (N+)= $0.000758 11$

 $^{234}_{92}\mathrm{U}_{142}$ -17

From ENSDF

 $^{234}_{92}\mathrm{U}_{142}\text{--}17$

L

						Adopted	Levels, Ga	ammas (continued)
							$\gamma(^{234}\text{U})$ (c	continued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α #	Comments
								α (N)=0.000592 9; α (O)=0.0001399 20; α (P)=2.51×10 ⁻⁵ 4; α (Q)=1.069×10 ⁻⁶
1552.555	5+	604.6 <i>3</i>	0.29 12	947.64	4+	[E2,M1]	0.09 6	$\alpha(\mathbf{K}) = 0.075; \alpha(\mathbf{L}) = 0.0158; \alpha(\mathbf{M}) = 0.003718; \alpha(\mathbf{N}+) = 0.00137$ $\alpha(\mathbf{N}) = 0.00105; \alpha(\mathbf{Q}) = 0.0002412; \alpha(\mathbf{P}) = 4.6 \times 10^{-5}24; \alpha(\mathbf{Q}) = 3.3 \times 10^{-6}23$
		1256.5 <i>1</i>	0.33 4	296.072	6+	[M1,E2]	0.014 8	$\alpha(K) = 0.0016 \ 3, \ \alpha(C) = 0.0022 \ 10; \ \alpha(M) = 0.00054 \ 24; \ \alpha(N+) = 0.00020 \ 9$ $\alpha(K) = 0.00014 \ 7; \ \alpha(O) = 3.5 \times 10^{-5} \ 16; \ \alpha(P) = 7.E - 6 \ 3; \ \alpha(Q) = 5.E - 7 \ 3;$ $\alpha(IPF) = 1.5 \times 10^{-5} \ 7$
1553.60	(1)	1409.1 2 468.1 5 509.2 8 701.6 3 1510.5 5	0.25 5 18.1 <i>18</i> 16 <i>3</i> 59 6 100 <i>7</i>	143.352 1085.26 1044.536 851.74 43.4981	4 ⁺ 2 ⁺ 0 ⁺ 2 ⁺ 2 ⁺ 2 ⁺			
1570.690	1+	1354.1 5 135.32 8 485.44 7 526.02 10 581.19 10 719.01 7 760 53 15	69 6 0.18 2 0.79 7 0.38 5 3.3 4 1.09 7 0.18 4	0.0 1435.380 1085.26 1044.536 989.430 851.74 809.907	0^{+} 1^{-} 2^{+} 0^{+} 2^{-} 2^{+} 0^{+}			
		1527.21 4	100 4	43.4981	2+	E2+M1	0.009 4	α (K)=0.007 4; α (L)=0.0014 6; α (M)=0.00033 14; α (N+)=0.00022 10 α (N)=9.E-5 4; α (O)=2.1×10 ⁻⁵ 9; α (P)=4.1×10 ⁻⁶ 17; α (Q)=3.2×10 ⁻⁷ 15; α (IPF)=0.00011 5
		1570.68 4	45.3 19	0.0	0+	M1	0.01204	$\alpha(K)=0.00951 \ 14; \ \alpha(L)=0.001769 \ 25; \ \alpha(M)=0.000425 \ 6; \ \alpha(N+)=0.000335 \ 5 \\ \alpha(N)=0.0001145 \ 16; \ \alpha(O)=2.79\times10^{-5} \ 4; \ \alpha(P)=5.38\times10^{-6} \ 8; \ \alpha(Q)=4.33\times10^{-7} \\ 6; \ \alpha(IPF)=0.000187 \ 3 $
1581.59	(5 ⁻)	558.0 [@] 2 619.0 2	100 <i>23</i> 39 <i>12</i>	1023.77 962.546	4+ 5-			
1588.819	5+	634.3 ^{@a} 2 394.1 <i>l</i> 461.5 [@] <i>l</i> 498.0 [@] <i>l</i>	9 <i>1</i> 6 <i>1</i>	947.64 1194.748 1127.552 1090.89	4 ⁺ 6 ⁻ 5 ⁻ 5 ⁺			
		519.6 <i>1</i>	38 3	1069.281	4-			
		565.2 [@] 1	100 6	1023.77	4+	(M1)	0.179	$ \alpha({\rm K}) = 0.1429 \ 20; \ \alpha({\rm L}) = 0.0272 \ 4; \ \alpha({\rm M}) = 0.00656 \ 10; \ \alpha({\rm N}+) = 0.00229 \ 4 \\ \alpha({\rm N}) = 0.001768 \ 25; \ \alpha({\rm O}) = 0.000430 \ 6; \ \alpha({\rm P}) = 8.29 \times 10^{-5} \ 12; \ \alpha({\rm Q}) = 6.62 \times 10^{-6} \\ 10 $
		1292.8 <i>1</i>	45 3	296.072	6+	M1	0.0199	$\alpha(K)=0.01592\ 23;\ \alpha(L)=0.00297\ 5;\ \alpha(M)=0.000715\ 10;\ \alpha(N+)=0.000281\ 4$ $\alpha(N)=0.000193\ 3;\ \alpha(O)=4.68\times10^{-5}\ 7;\ \alpha(P)=9.04\times10^{-6}\ 13;\ \alpha(Q)=7.27\times10^{-7}$
		1445.4 <i>1</i>	31 <i>3</i>	143.352	4+			11; $\alpha(1rr)=5.10\times10^{-5}$

From ENSDF

L

18

_ 1
_ 1
_ 1

$\gamma(^{234}\text{U})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α #	Comments
1589.0?	11-	565.4 ^a		1023.8	12+			
		847.8 ^a		741.2	10^{+}			
1592.29	(1)	507.5 ^a 10	13.3 14	1085.26	2^{+}			
		739.95 10	100 3	851.74	2^{+}			
		781.37 10	66.5 16	809.907	0^{+}			
		1550.0 10	15.7 <i>13</i>	43.4981	2+			
		1593.88 10	23.0 9	0.0	0^{+}			
1601.826	1^{+}	166.5 <i>1</i>	0.032 6	1435.380	1-			
		516.60 6	1.67 11	1085.26	2^{+}	(M1)	0.228	α (K)=0.182 3; α (L)=0.0347 5; α (M)=0.00837 12; α (N+)=0.00292 4
								α (N)=0.00226 4; α (O)=0.000548 8; α (P)=0.0001058 15; α (Q)=8.44×10 ⁻⁶ 12
		557.24 6	1.14 7	1044.536	0^{+}	(M1)	0.186	α (K)=0.1485 21; α (L)=0.0283 4; α (M)=0.00682 10; α (N+)=0.00238 4
								$\alpha(N)=0.00184 \ 3; \ \alpha(O)=0.000447 \ 7; \ \alpha(P)=8.62\times10^{-5} \ 12; \ \alpha(Q)=6.88\times10^{-6} \ 10$
		750.12 6	2.35 14	851.74	2^{+}	(M1)	0.0841	$\alpha(K)=0.0672 \ 10; \ \alpha(L)=0.01272 \ 18; \ \alpha(M)=0.00306 \ 5; \ \alpha(N+)=0.001067 \ 15$
								$\alpha(N)=0.000825 \ 12; \ \alpha(O)=0.000201 \ 3; \ \alpha(P)=3.87\times10^{-5} \ 6; \ \alpha(O)=3.09\times10^{-6} \ 5$
		791.94 5	1.36 8	809.907	0^{+}			
		1558.31 4	100.0 11	43.4981	2^{+}	M1	0.01228	α (K)=0.00971 14; α (L)=0.00181 3; α (M)=0.000434 6; α (N+)=0.000330 5
								α (N)=0.0001169 17; α (O)=2.84×10 ⁻⁵ 4; α (P)=5.49×10 ⁻⁶ 8; α (Q)=4.43×10 ⁻⁷ 7; α (IPF)=0.0001783 25
		1601.80 4	48.9 20	0.0	0^{+}	(M1)	0.01146	α (K)=0.00902 13; α (L)=0.001679 24; α (M)=0.000403 6; α (N+)=0.000351 5
								α (N)=0.0001086 <i>16</i> ; α (O)=2.64×10 ⁻⁵ <i>4</i> ; α (P)=5.10×10 ⁻⁶ <i>8</i> ; α (Q)=4.11×10 ⁻⁷ <i>6</i> ; α (IPF)=0.000210 <i>3</i>
1619.58	(6^{+})	357.9 1	100 29	1261.782	7+			
		$446.6^{@a}$ 1		1172.043	6+			
		520 1 @a 3		1000.80	5+			
		529.1 5 657 A^{a} 1		062 546	5-			
		1475 8 2	23.0	143 352	4+			
1649 99	(6^{-})	553 7 1	$\frac{23}{33}$ 12	1096 12	т 6 ⁺			
1019.99	(0)	1354.6.2	100 24	296.072	6 ⁺			
1653.30	(3^{+})	629.4 1	65 10	1023.77	4^{+}	(M1)	0.1342	$\alpha(K)=0.1072, 15; \alpha(L)=0.0204, 3; \alpha(M)=0.00491, 7; \alpha(N+)=0.001711, 24$
1000100	(0)	020111	00 10	1020111	•	(1111)	0110 12	$\alpha(\mathbf{N}) = 0.001322.19; \ \alpha(\mathbf{O}) = 0.000322.5; \ \alpha(\mathbf{P}) = 6.20 \times 10^{-5}.9; \ \alpha(\mathbf{O}) = 4.95 \times 10^{-6}.7$
		663.9.1	100 14	989.430	2-			$u(r) = 0.20710 \pm 17, u(r) = 0.00000 \pm 0, u(r) = 0.20710 = 7, u(r) = 0.0710 = 7$
		1510.1.2	<17	143 352	$\frac{2}{4^{+}}$			
1667.4	(1^{-})	818.2.5	26.8	849.266	3-			
100/11	(1)	880.9.5	100	786.288	1-			
		1667.6 10	21 5	0.0	0^{+}			
1687.8	16^{+}	347.3		1340.5	14^{+}			
1693.453	5-	140.91 3	29 <i>3</i>	1552.555	5+			
	-	272.28 5	100 10	1421.257	6-	(M1)	1.310	$\alpha(K)=1.042$ 15; $\alpha(L)=0.202$ 3; $\alpha(M)=0.0487$ 7; $\alpha(N+)=0.01699$ 24
								α (N)=0.01313 <i>19</i> ; α (O)=0.00319 <i>5</i> ; α (P)=0.000616 <i>9</i> ; α (Q)=4.91×10 ⁻⁵ <i>7</i>
		416.1 <i>1</i>	3.3 10	1277.461	7-			

19

 $^{234}_{92}\mathrm{U}_{142}$ -19

						Adopted	Levels,	Gammas (co	ontinued)
							γ(²³⁴ U)	(continued)	
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ	α #	Comments
1693 453	5-	$478.6^{@a}$ 1	<11	1214 71	4+				
1075.455	5	408 0 @ 1	211	1104 748	т 6-				
		521 4 1	69.5	1172 043	6 ⁺				
		521.71	075	1172.045	5-				
		505.2 ⁻ 1 602.6 1	50.3	1127.332	5 5+				
		624.2.1	30 3	1090.89	5 1-	$(M1\pm F2)$	~0.7	~0.1015	$\alpha(K) \sim 0.0700; \alpha(L) \sim 0.01627; \alpha(M) \sim 0.00306; \alpha(N +) \sim 0.001378$
		024.2 1	52 5	1009.201	4	$(M11\pm L2)$	~0.7	~0.1015	$\alpha(N) \approx 0.01067; \alpha(\Omega) \approx 0.000258; \alpha(N) \approx 0.000590; \alpha(N+) \approx 0.001578$ $\alpha(N) \approx 0.01067; \alpha(\Omega) \approx 0.000258; \alpha(P) \approx 4.94 \times 10^{-5}; \alpha(\Omega) \approx 3.71 \times 10^{-6}$
		66971	91 5	1023 77	4^{+}				$u(1) \sim 0.001007, u(0) \sim 0.000230, u(1) \sim 1.94 \times 10^{-3}, u(0) \sim 5.71 \times 10^{-3}$
		730.9.2	58.8	962.546	5-				
		745.9 1	30.3	947.64	4+				
		844.1 <i>1</i>	39 <i>3</i>	849.266	3-				
		1397.5 2	7.6 19	296.072	6^{+}				
		1550.1 <i>1</i>	71	143.352	4+				
1693.7?	(1^{-})	456.7 10	66 14	1237.256	1-				
		844.1 8	100 22	849.266	3-				
		1694.1 <i>10</i>	42 8	0.0	0^{+}				
1722.87	3-	595.4 2	1.3 3	1127.552	5-				
		653.7 [@] 1	6.7 9	1069.281	4-	M1		0.1213	$\alpha(K)=0.0969$ 14; $\alpha(L)=0.0184$ 3; $\alpha(M)=0.00443$ 7; $\alpha(N+)=0.001545$ 22
									α (N)=0.001194 <i>17</i> ; α (O)=0.000290 <i>4</i> ; α (P)=5.60×10 ⁻⁵ <i>8</i> ; α (Q)=4.47×10 ⁻⁶ <i>7</i>
		699.03 [@] 5	52 <i>3</i>	1023.826	3-	M1		0.1015	$\alpha(K)=0.0811 \ 12; \ \alpha(L)=0.01537 \ 22; \ \alpha(M)=0.00370 \ 6; \ \alpha(N+)=0.001290 \ 18$
									$\alpha(N)=0.000997 \ 14; \ \alpha(O)=0.000242 \ 4; \ \alpha(P)=4.68\times10^{-5} \ 7; \ \alpha(O)=3 \ 74\times10^{-6} \ 6$
		733.39 5	100 6	989.430	2-	M1		0.0893	$\alpha(\chi) = 0.714 \ 10; \ \alpha(L) = 0.01351 \ 19; \ \alpha(M) = 0.00325 \ 5; \ \alpha(N+) = 0.001134 \ 16$
									α (N)=0.000876 <i>13</i> ; α (O)=0.000213 <i>3</i> ; α (P)=4.11×10 ⁻⁵ <i>6</i> ; α (Q)=3.29×10 ⁻⁶ <i>5</i>
		761.0 2	1.0 4	962.546	5-				
		874.0 <i>3</i>	0.52 11	849.266	3-				
		1679.5 <i>1</i>	1.1 3	43.4981	2^{+}				
1723.402	4+	134.61 2	2.0 4	1588.819	5+	M1		9.50	α (K)=7.54 <i>11</i> ; α (L)=1.480 <i>21</i> ; α (M)=0.358 <i>5</i> ; α (N+)=0.1249 <i>18</i> α (N)=0.0965 <i>14</i> ; α (O)=0.0235 <i>4</i> ; α (P)=0.00453 <i>7</i> ; α (Q)=0.000362 <i>5</i>
		170.85 2	8.7 9	1552.555	5+	M1		4.83	$\alpha(K)=3.84 6; \alpha(L)=0.749 11; \alpha(M)=0.181 3; \alpha(N+)=0.0632 9$ $\alpha(N)=0.0488 7; \alpha(O)=0.01188 17; \alpha(P)=0.00229 4; \alpha(Q)=0.000183 3$
		179.80 8	0.8 3	1543.69	4+				
		186.15 2	30.5 18	1537.228	4+	M1		3.79	$\alpha(K)=3.025; \alpha(L)=0.5879; \alpha(M)=0.142020; \alpha(N+)=0.04957$ $\alpha(N)=0.03836; \alpha(O)=0.0093113; \alpha(P)=0.001803; \alpha(O)=0.000143320$
		227.25 3	100 6	1496.111	3+	M1		2.17	$\alpha(K)=1.724\ 25;\ \alpha(L)=0.335\ 5;\ \alpha(M)=0.0809\ 12;\ \alpha(N+)=0.0282\ 4$

 $^{234}_{92}\mathrm{U}_{142}\text{--}20$

L

						Adopted L	evels, Gam	mas (continued)
						<u> </u>	(²³⁴ U) (cor	tinued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α #	Comments
								α (N)=0.0218 3; α (O)=0.00530 8; α (P)=0.001022 15; α (Q)=8.15×10 ⁻⁵ 12
1723.402	4+	558.0 [@] 2		1165.44	3+			
		596.9 [@] 1	0 (0 10	1126.626	$2^{+}_{$			
		632.6 2	0.62 18	1090.89	5 ⁻			
		$699.03 \circ 3$	01 1 11	1023.826	3 2+	$(\mathbf{E} \mathbf{O} \mathbf{M} \mathbf{I})$	0.05 4	
		/55.0 1	21.1 11	968.425	3'	(E2,M1)	0.05 4	$\alpha(\text{K})=0.04\ 3;\ \alpha(\text{L})=0.008\ 3;\ \alpha(\text{M})=0.0020\ 10;\ \alpha(\text{N}+)=0.0007\ 4$ $\alpha(\text{N})=0.0005\ 3;\ \alpha(\text{O})=0.00013\ 7;\ \alpha(\text{P})=2.5\times10^{-5}\ 13;\ \alpha(\text{Q})=1.8\times10^{-6}\ 12$
		796.1 <i>I</i>	45 4	926.720	2^+			
		1426.9 <i>1</i> 1579 9 <i>1</i>	2.9 4	296.072	$\frac{6}{4^+}$			
1737 43	3+	$713.7^{@}$ 1	21.3	1023 826	3-			
1757.15	5	748.1 3	15 3	989.430	2^{-}			
		1594.0 <i>1</i>	45 3	143.352	4+	M1,E2	0.008 4	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.006 \ 3; \ \alpha(\mathrm{L}) = 0.0012 \ 5; \ \alpha(\mathrm{M}) = 0.00029 \ 12; \ \alpha(\mathrm{N}+) = 0.00025 \ 10 \\ \alpha(\mathrm{N}) = 8.\mathrm{E} - 5 \ 4; \ \alpha(\mathrm{O}) = 1.9 \times 10^{-5} \ 8; \ \alpha(\mathrm{P}) = 3.7 \times 10^{-6} \ 15; \ \alpha(\mathrm{Q}) = 2.9 \times 10^{-7} \ 13; \\ \alpha(\mathrm{IPF}) = 0.00015 \ 6 \end{array} $
		1693.8 2	100 11	43.4981	2+			
1738.17	(3+)	612.0 1	100 9	1126.626	2+	(M1)	0.1447	$\alpha(K)=0.1156 \ 17; \ \alpha(L)=0.0220 \ 3; \ \alpha(M)=0.00530 \ 8; \ \alpha(N+)=0.00185 \ 3$ $\alpha(N)=0.001426 \ 20; \ \alpha(O)=0.000347 \ 5; \ \alpha(P)=6.69\times10^{-5} \ 10; $ $\alpha(O)=5.34\times10^{-6} \ 8$
		811.5 <i>1</i>	32 <i>3</i>	926.720	2^{+}			
		1695.0 3	70 17	43.4981	2+			
1761.79	(4 ⁻)	634.3 ^w 2	≤12 100 €	1127.552	5-	(M1)	0.1040	$\alpha(W) = 0.0821$ 12; $\alpha(U) = 0.01575$ 22; $\alpha(M) = 0.00270$ 6; $\alpha(MU) = 0.001222$ 10
		092.0 1	100 0	1009.281	4	(1011)	0.1040	$\alpha(\mathbf{K})=0.0831\ 12;\ \alpha(\mathbf{C})=0.01575\ 22;\ \alpha(\mathbf{M})=0.00579\ 0;\ \alpha(\mathbf{N}+)=0.001522\ 19$ $\alpha(\mathbf{N})=0.001022\ 15;\ \alpha(\mathbf{O})=0.000249\ 4;\ \alpha(\mathbf{P})=4.79\times10^{-5}\ 7;\ \alpha(\mathbf{Q})=3.83\times10^{-6}$
		738.0 1	93 6	1023.826	3-	(M1)	0.0878	$ \alpha(\mathbf{K}) = 0.0702 \ 10; \ \alpha(\mathbf{L}) = 0.01329 \ 19; \ \alpha(\mathbf{M}) = 0.00320 \ 5; \ \alpha(\mathbf{N}+) = 0.001115 \ 16 \\ \alpha(\mathbf{N}) = 0.000862 \ 12; \ \alpha(\mathbf{O}) = 0.000210 \ 3; \ \alpha(\mathbf{P}) = 4.04 \times 10^{-5} \ 6; \ \alpha(\mathbf{Q}) = 3.23 \times 10^{-6} \\ 5 $
		772.4 2	5.8 17	989.430	2^{-}			-
		792.8 <i>3</i>	3.6 9	968.425	3+			
1770 70	(2^{+})	1618.3 2	0.75 25	143.352	4+ 2+			
1770.79	(5^{+})	1627 3 <i>1</i>	100 11	908.425	3* 4+			
		1727.8 2	26 6	43.4981	2^{+}			
1781.22	$(0^+, 1)$	209.9 4	6.2 8	1570.690	1+			
		543.98 10	17.09	1237.256	$1^{-}_{2^{+}}$			
		695.5 10	7.4 8	1085.26	2^{+}			
		996.1 20	19 4	786.288	1-			

 $^{234}_{92}\mathrm{U}_{142}\text{--}21$

						Adopted Le	evels, Gamr	nas (continued)
						<u>γ(</u>	²³⁴ U) (cont	inued)
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α #	Comments
1781.22	$(0^+, 1)$	1737.73 10	100 2	43.4981	2^{+}			
1782.554	5+	59.19 5	4.2 14	1723.402	4+			
		193.73 <i>3</i>	66 9	1588.819	5+	(M1+E2)	2.1 13	$\alpha(K)=1.4 \ 13; \ \alpha(L)=0.510 \ 16; \ \alpha(M)=0.132 \ 6; \ \alpha(N+)=0.0457 \ 16 \ \alpha(N)=0.0356 \ 16; \ \alpha(Q)=0.00844 \ 18; \ \alpha(P)=0.00152 \ 9; \ \alpha(Q)=7.E-5 \ 6$
		245.37 2	100 11	1537.228	4+	M1	1.749	α (K)=1.392 20; α (L)=0.270 4; α (M)=0.0652 10; α (N+)=0.0227 4 α (N)=0.01757 25; α (O)=0.00427 6; α (P)=0.000824 12; α (Q)=6.57×10 ⁻⁵ 10
		360.6 <i>3</i>	2.3 9	1421.257	6-			
		$617.0^{@a}2$		1165 44	3+			
		655.2.2	18 3	1127 552	5-			
		758 9 1	33 3	1023 77	3 4+			
		814.2.1	41 3	968 425	3+			
		1485 4 2	409	296.072	6 ⁺			
		1638.1 <i>1</i>	27.4 14	143.352	4 ⁺	(M1)	0.01083	$\alpha(K)=0.00850 \ 12; \ \alpha(L)=0.001581 \ 23; \ \alpha(M)=0.000380 \ 6; \ \alpha(N+)=0.000371$
								$\alpha(N)=0.0001023 \ 15; \ \alpha(O)=2.49\times10^{-5} \ 4; \ \alpha(P)=4.81\times10^{-6} \ 7; \ \alpha(O)=3.88\times10^{-7} \ 6; \ \alpha(IPF)=0.000238 \ 4$
1784.18	4+	857.7 2	100 20	926.720	2^{+}			
		1488.0 2	37 15	296.072	6+			
		1640.5 <i>3</i>	29 9	143.352	4+			
1793.01	4+	240.20 10	28 12	1552.555	5+			
		769.1 <i>1</i>	100 6	1023.77	4^{+}			
		1496.0 2	19 5	296.072	6+			
		1650.2 2	<2.8	143.352	4+			
		1750.0 <i>1</i>	34 4	43.4981	2+			
1796.3	(1)	338.1 8	100 21	1457.16	(2^{-})			
		362.8 10	61 <i>13</i>	1435.380	1-			
		1796.2 10	28 6	0.0	0^{+}			
1809.73	(1^{-})	572.0 10	10 2	1237.256	1^{-}			
		683.4 10	6.6 14	1126.626	2^{+}			
		883.24 4	20 6	926.720	2^{+}			
		960.0 10	10 4	849.266	3-			
		1765.44 10	100.0 15	43.4981	2+			
		1809.04 10	42.5 10	0.0	0^{+}			
1811.62	4+	596.9 [@] 1	26 <i>3</i>	1214.71	4+			
		683.9 2	20 4	1127.552	5-			
		$685.1^{\textcircled{0}}2$	19 4	1126.626	2^{+}			
		848.9 2	3.5 10	962.546	5-			
		863.2 2	93	947.64	4+			
		960.0 1	9.5 14	851.74	2^{+}			
		1515.6 2	9.5 14	296.072	6+			
		1668.4 <i>1</i>	100 7	143.352	4+	(M1)		

 $^{234}_{92}\mathrm{U}_{142}\text{--}22$

 $^{234}_{92}\mathrm{U}_{142}\text{--}22$

From ENSDF

$\gamma(^{234}\text{U})$ (continued)
-------------------------------------	---

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
1811.62	4+	1768.0 3	2.6 6	43.4981	2+	1940.50	4+	916.5 ^a 2	10 3	1023.826	3-
1843.86	3,4,5-	994.6 <i>3</i>	60 20	849.266	3-			1644.9 2	4.3 13	296.072	6+
	- , ,-	1700.5 2	100 10	143.352	4+			1797.1 <i>1</i>	100 9	143.352	4+
1863.07	(5^{+})	1567.0 2	65 12	296.072	6+			1896.7 2	43 9	43.4981	2^{+}
	· · ·	1719.7 2	100 30	143.352	4+	1958.77	3-	221.15 10	45 19	1737.43	3+
1863.16	(1)	936.3 10	100 23	926.720	2^{+}			235.11 3	100 19	1723.402	4+
		1819.69 10	50 4	43.4981	2+			502.0 1	24 8	1457.16	(2^{-})
		1863.09 15	67 4	0.0	0^{+}			890.1 4	24 7	1069.281	4-
1875.3	(1)	1831.5 5	100 4	43.4981	2^{+}			935.8 2	58 7	1023.77	4+
		1875.5 5	49 5	0.0	0^{+}			1110.6 <i>1</i>	55 10	849.266	3-
1881.74	4+	716.5 2	21 6	1165.44	3+			1173.1 <i>1</i>	40 7	786.288	1-
		755.0 [@] 1		1126.626	2^{+}			1815.3 <i>3</i>	8 <i>3</i>	143.352	4+
		1585.9 <i>1</i>	100 7	296.072	6+			1915.5 <i>3</i>	17 4	43.4981	2+
		1737.7 2	51 6	143.352	4+	1968.84	4+,5	1672.8 <i>1</i>	100 30	296.072	6+
		1838.0 ^{@a} 2		43.4981	2+			1825.1 <i>3</i>	27 9	143.352	4+
1911.09	(1^{-})	357.5 10	6.2 14	1553.60	(1)	1969.9	(1^{-})	732.5 10	76 9	1237.256	1-
		453.58 10	15.0 13	1457.16	(2^{-})			1120.6 8	100 9	849.266	3-
		475.75 10	18.0 12	1435.380	1^{-}			1926.5 10	26 5	43.4981	2+
		673.9 10	5.0 11	1237.256	1-			1970.0 15	33 7	0.0	0^{+}
		825.6 5	11 3	1085.26	2^{+}	1981.26	4^{+}	257.2 1	17 7	1723.402	4+
		866.8 10	8.4 18	1044.536	0^{+}			433.1 <i>1</i>	30 4	1548.28	(5)
		921.70 10	100.0 11	989.430	2^{-}			1685.7 <i>1</i>	100 7	296.072	6+
		1059.4 8	8.6 18	851.74	2^{+}			1838.0 [@] 2	13 <i>3</i>	143.352	4+
		1061.86 10	18.0 10	849.266	3-			1937.7 <i>3</i>	13 4	43.4981	2+
		1125.7 5	28 5	786.288	1^{-}	2000.44	(4^{+})	1037.9 2	17 6	962.546	5-
		1867.68 10	72.3 11	43.4981	2^{+}			1073.6 2	100 10	926.720	2^{+}
		1911.17 <i>10</i>	49.5 8	0.0	0^{+}			1151.4 [@] 3		849.266	3-
1916.26	3,4+	989.5 <i>1</i>	100 10	926.720	2+	2019.81	4+	1051.4 2	100 17	968.425	3+
		1773.0 2	65 15	143.352	4^{+}			1057.8 <i>3</i>	≈28	962.546	5-
		1872.8 2	34 8	43.4981	2^{+}			1723.2 2	25 5	296.072	6+
1927.52	4+	165.61 ^{<i>a</i>} 5	100 29	1761.79	(4-)			1977.4 <i>4</i>	27 7	43.4981	2+
		308.6 ^{<i>a</i>} 2	29 8	1619.58	(6^{+})	2033.52	3+,4+	310.2 1	23 4	1723.402	4+
		586.3 1	100 15	1341.33	(6^{+})			481.0 <i>1</i>	100 7	1552.555	5+
		653.7 ^{@a} 1		1274.29	(5^{+})			537.2 1	27 4	1496.111	3+
		713.7 ^{@a} 1		1214.71	4+			1009.9 [@] 3	21 4	1023.77	4+
		1783.7 2	34 9	143.352	4^{+}			1065.1 <i>1</i>	8.7 24	968.425	3+
		1884.1 <i>3</i>	21 4	43.4981	2^{+}			1106.9 2	27 4	926.720	2+
1937.01	(1)	699.0 10	27 6	1237.256	1-			1182.1 2	≈3.0	851.74	2^{+}
		1893.50 <i>10</i>	75 <i>3</i>	43.4981	2+			1890.1 2	47 4	143.352	4+
		1937.01 10	100 3	0.0	0^{+}			1989.6 4	2.3 10	43.4981	2+

$\gamma(^{234}\text{U})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\dagger}	$E_f J_f^{\pi}$	E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^π
2037.05	4+,5	1741.1 2	100 13	296.072 6+	2115.66	4+	562.8 3	44 13	1552.555	5+
		1893.4 <i>3</i>	≈13	143.352 4+			1019.5 4	33 9	1096.12	6+
2062.8	18^{+}	375.0 5		1687.8 16+			1153.5 <i>3</i>	55 9	962.546	5-
2066.24	4+,5	975.1 <i>1</i>	40 11	1090.89 5+			1819.8 <i>3</i>	5.0 13	296.072	6+
		997.7 <i>3</i>	68 16	1069.281 4-			1971.2 4	≈3.2	143.352	4+
		1770.8 2	100 24	296.072 6+			2072.2 4	5.0 25	43.4981	2+
2068.81	3,4,5+	331.4 <i>1</i>	24 4	1737.43 3+	2144.01	3+,4+	869.7 <i>1</i>	90 10	1274.29	(5^{+})
		1925.4 2	100 14	143.352 4+			1217.3 <i>1</i>	100 10	926.720	2+
2101.43	5+	839.5 1	100 24	1261.782 7 ⁺	2464.0	20^{+}	401.2 5		2062.8	18^{+}
		1009.9 [@] 3		1090.89 5+	2889.5	22^{+}	425.5 5		2464.0	20^{+}
		1032.8 2	57 14	1069.281 4-	3338.5	24+	449 <i>1</i>		2889.5	22^{+}
		1805.8 <i>3</i>	177	296.072 6+	3807.5	26^{+}	469		3338.5	24^{+}
		1958.0 4	32 9	143.352 4+	4296.5	(28^{+})	489		3807.5	26^{+}
2115.66	4+	534.1 <i>1</i>	100 13	1581.59 (5-) 4807?	(30+)	510 ^a		4296.5	(28+)

[†] Relative photon intensity deexciting each level, adopted from 6.70-h 234 Pa β^- decay, 1.159-min 234 Pa β^- decay, and 238 Pu α decay. [‡] From ce data measured in 6.70-h 234 Pa, 1.159-min 234 Pa, 234 Pu decays. γ -ray multipolarities, deexciting levels with measured half-lives, have been

included in square brackets with the purpose of calculating γ -ray transition rates.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Multiply placed.

24

[&] Multiply placed with intensity suitably divided.

^{*a*} Placement of transition in the level scheme is uncertain.

 $^{234}_{\ 92}U_{142}$

 $^{234}_{\ 92}U_{142}$

Adopted Levels, Gammas

 $^{234}_{92}U_{142}$

Adopted Levels, Gammas

 $^{234}_{\ 92}U_{142}$

 $^{234}_{92}\mathrm{U}_{142}\text{--}35$

From ENSDF

 $^{234}_{92}\mathrm{U}_{142}$ -35

Adopted Levels, Gammas

Band(A): $K^{\pi}=0^{-}$ octupole-vibrational band

<u>11⁻</u> <u>1589.0</u>

 $^{234}_{92}U_{142}$

				Band(K): $K^{\pi}=5^+$ band: Configuration=((v 5/2(622))(v 5/2(633))	
			Band(J): $K^{\pi}=3^+$ band: Configuration=((ν 5/2(633))(ν 1/2(631))	<u>(9+)</u> <u>1891.3</u>	
			(8 ⁺) 1849.7		
		Band(I): $K^{\pi}=1^{-}$ band: Configuration=((v 7/2(743))(v 5/2(633)) The amplitude square of this configuration in a probable octupole vibration was deduced by 1968Bj05 from (d,t) data to be 100% 20	(7+) 1736.5	<u>(8⁺) 1780.2</u>	
		(7 ⁻) 1718.5			
	Band(H): K ^π =6 ⁻ band: Configuration=((ν 7/2(743))(ν 5/2(633))			(7 ⁺) 1690.5	
	(9 ⁻) 1651.2	(6 ⁻) 1649.99	(6 ⁺) 1653.9		
				(6 ⁺) <u>1619.58</u>	Band(L): K=1 state: Configuration=($(\pi$ 3/2(651)) $(\pi$ 5/2(642))
	(9 ⁻) 15(7.7	(5 ⁻) 1581.59	5+ 1588.819		1+ 1570.690
	(0) 1507.7	(4 ⁻) 1533.31	<u>4+ 1537.228</u>	<u>5+</u> <u>1552.555</u>	
	(7 ⁻) 1486.7	(3 ⁻) 1486.16	<u>3+ 1496.111</u>		
Band(G): $\mathbf{K}^{\pi} = (0^{-})$ band		(2 ⁻) 1457.16			
5- 1447.52		1- 1435.380			
	6- 1421.257	•			

3- 1312.18

1- 1237.256

 $^{234}_{\ 92}U_{142}$

			Band(P)+ K	π -4 ⁺ hand:		Band(R): Configu 7/2(743)) and con assignment 1968Bj05 f	K^{π} =3 ⁺ band: irration=((v (v 1/2(501)) J nfiguration s were made by from (d,t) data
			Band(P): $K^{*}=4^{+}$ band: Configuration=((v 7/2(743))(v 1/2(501))			(4+)	2000.44
			(6+)	1985.2			
						(3+)	1955.8
			(5+)	1931.2			
			4 +	1881.74	Band(Q): $K^{\pi}=3^+ \pi \pi$ 1/2[530], 5/2[525] configuration was suggested by 1986Ar03 from two-quasiparticle states' energy calculations of 1964Sof (5 ⁺) 1863.07	5 e 2	
Band(M): K [#] =5 ⁻ band: Configuration=((v 7/2(743))(v 3/2(631)) (7 ⁻) 1810.0	Band(N): $K^{\pi}=3^{-}$ band: Configuration=((π 5/2(642))(π 1/2(530)) Configuration was proposed by 1968Bj06 from 234Pa ac β	Band(O): $K^{\pi}=4^+$ band: Configuration=((v 5/2(633))(v 3/2(631)) + ((π 3/2[631])(π 5/2[642]) Configuration was proposed by 1968Bj06 on the bases of strong M1 transition to K=3 vv 5/2[633],1/2[631] band and of β^- feeding from 234 Pa g.s			<u>4+ 1811.62</u>		
<u>(6⁻) 1747.1</u>	(4 ⁻) 1761.79	59			<u>(3⁺)</u> <u>1770.79</u>		
	<u> </u>	→ <u> </u>					

5- 1693.453

 $^{234}_{\ 92}U_{142}$