234 Ac β^- decay 1986Gi08

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	E. Browne, J. K. Tuli	NDS 108, 681 (2007)	1-Jun-2006	

Parent: ²³⁴Ac: E=0.0; $T_{1/2}$ =44 s 7; Q(β^{-}) \approx 4700; % β^{-} decay=100.0

The partial decay scheme is given as constructed by 1986Gi08.

The total K x-ray intensity expected from K conversion of the observed γ -ray transitions, by assuming that the multipolarities of the unplaced γ rays are not M3 or higher, is \leq 24. The fact that the measured relative K x-ray intensity of 81±11 is much higher than the calculated intensity may suggest a presence of some E0 transitions, and/or M3 (or higher) multipolarity for lower-energy unplaced γ rays.

X rays(thorium):

relative I(x ray) for I(688.5 γ)=100	
27 6	K $lpha_2$ x ray
42 6	K $lpha_1$ x ray
12 6	K eta x ray

²³⁴Th Levels

E(level) [†]	$J^{\pi \dagger}$
0.0	0^{+}
49.55 6	2+
163.0 <i>1</i>	4+
688.5 <i>3</i>	(1^{-})
1896 2	$(1,2^{+})$
1912 2	$(1,2^+)$

[†] Adopted values.

E_i(level) Mult.[‡] Comments \mathbf{E}_f (49.55 6) 49.55 E2 326 α (L)=239.6; α (M)=65.3 E_{γ} : transition was not observed in ²³⁴Ac β^{-} decay; its energy is from 238 U α decay. 4^{+} $\alpha(K)=0.2375; \alpha(L)=4.64; \alpha(M)=1.275;$ 113.3 4 12 3 163.0 49.55 2+ [E2] 6.63 α (N+..)=0.475 $E\gamma = 113.5 \ I$ was measured in ²³⁸U α decay. x395.1 3 27 9 *x*400.1 *3* 14.8638.7 *3* 59 12 688.5 (1^{-}) 49.55 2+ [E1] 0.00787 $\alpha(K)=0.00641; \alpha(L)=0.001101$ 100 14 0.0 0+ 688.5 *3* 688.5 [E1] 0.00683 $\alpha(K)=0.00556; \alpha(L)=0.000950$ (1^{-}) x693.2 3 68 13 x906.8 4 55 15 1751 2 67 16 $(1,2^+)$ 163.0 1912 4+ 1847 2 $(1,2^+)$ 49.55 2+ 115 19 1896 (1,2+) 1896 1896 2 74 17 0.0 0+ $(1,2^+)$ 1912 2 105 20 0.0 0^{+} 1912 x1954 2 80 17

 $\gamma(^{234}\text{Th})$

[†] Measurements by 1986Gi08.

234 Ac β^- decay 1986Gi08 (continued)

γ (²³⁴Th) (continued)

- ^{\ddagger} Multipolarity of the 49.55-keV γ ray is from ²³⁸U α decay; E1 multipolarity for the 638.7 and 688.5 γ rays are assumed from the level scheme. [#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation
- based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- $x \gamma$ ray not placed in level scheme.

 $^{234}_{90}{\rm Th}_{144}$