Adopted Levels, Gammas

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	E. Browne, J. K. Tuli	NDS 108,681 (2007)	1-Jun-2006						
$Q(\beta^{-})=274 4$; $S(n)=6191 4$; $S(p)=7983 14$; $Q(\beta^{-})=7983 14$; $Q(\beta^{-})=1000$	$Q(\alpha) = 3673 \ 11 \ 2012 \text{V}$	/a38							
Note: Current evaluation has used the follow	ing Q record 273	3 6190 <i>3</i> 8170 syst	3672 <i>13</i> 2003Au03.						
Theory/Calculations:	_								
2006De05: Systematics of α decay to rotatio	nal states.								
2005La04: Binding energies, radii rel mean-	field interaction.								
2005Po01,2004Mo06,2003Po15,1995Ba47: I	Fission phenomena.								
For calculated and deduced fission-barrier pa	rameters, see 1971Pa31,	1974Ba28, 1976Sh22, 1	1978Ma48, 1978Pr05 and 1980Ku14,						
for example.									
2003Bu11,2003Bu27: Band comparisons.									
2002G111: Super-deformed states.									
2000Bu02,200bu32,1998Bu18,1983Ia01: Clu	ster models.								
19925010: Intrinsic structures and rotational 1988Bb04: g.s. hands anharmonic vibrator t	panus. nodel								
1988Ri07 1986Da03: interacting boson mode									
1988Bh04: B(E2) value for deexcitation of the	he 2 ⁺ state was calculate	ed using an anharmonic	vibrational description of the nuclear						
collective motion	ie 2 state was calculat	using an annamonie	violational description of the nuclear						
1987Be43: α decay.									
1986Da03: The (p,t) cross section for popula	tion of excited 0^+ state	relative to that for popul	lation of g.s. was calculated by						
utilizing an interacting boson model of a	-like clustering in nucle	i. The g.s. band level en	ergies and the $B(E2)$ value for excitation						
of the 2^+ state of g.s. band were calculated.									
1972Va20: calculations of low-lying 0 ⁺ states, and (p,t) strengths for their populations.									
1970Ga12, 1983Ro14: Calculated quadrupole and hexadecapole moments corresponding to equilibrium deformations.									
1970Ne08: Energies of octupole-vibrational bands and B(E3) values for excitation of 3^- states were calculated by using a modified									
octupole-octupole force and by including the Coriolis interaction between the states of the intrinsic octupole quadruplet									
$(K^{\pi}=0^{-},1^{-},2^{-},3^{-}).$									
γ -vibrational state energy and B(E2) value for	or excitation of 2^+ state	were calculated by 1965	Be40 within the framework of the						
Nilsson single-particle model, the quasip	article and quasiboson a	pproximations.							
1967So04, 1970Ga12, 1982Le19, 1982Du16, 1983Ro14: calculations of equilibrium deformation parameters.									
1965So04: Quadrupole $(K^{\pi}=0^+,2^+)$ and octu	pole $(K^{\pi}=0^{-},1^{-},2^{-})$ col	lective bandheads were	calculated by using the superfluid						
nuclear model.									
	234	Th Lovala							
		TH Levels							

Cross Reference (XREF) Flags

A	238 U α decay	D	²³⁸ U(d, ⁶ Li)
B	234 Ac β^- decay	E	²³² Th(¹⁸ O, ¹⁶ Ογ)
C	232 Th(136 Xe,X γ)	F	²³² Th(t,p) E=20 MeV

E(level)#	$J^{\pi \dagger}$	T _{1/2}	XREF	Comments
0.0@	0+	24.10 d 3	ABCDEF	$%β^-=100$ α decay was not observed: $%α<1\times10^{-4}$ (1955De47). α-decay Γ was calculated by 1978Pi14 and by 1987Be43 as 1.82×10^{-39} MeV and 9.65×10^{-39} MeV, respectively. α and ²² O decay probabilities were calculated by 1986Ru11 as 4.7×10^{-29} /sec and 3.4×10^{-5} /sec, respectively. Probability of decay by heavy-ion emission was calculated also by 1986Pi11, and ²⁶ Ne decay was suggested as the most probable decay mode. $T_{1/2}$: 24.5 d (1931Cu01), 24.1 d 2 (1939Sa11), 24.101 d 25 (1948Kn23).

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

²³⁴Th Levels (continued)

E(level) [#]	$J^{\pi \dagger}$	T _{1/2}	XREF	Comments				
				$T_{1/2}(2\beta) > 4.5 \times 10^3$ y for 2v mode and >4.1 × 10 ⁴ y for 0v mode (2005Tr01).				
49.55 [@] 6	2+	0.37 ns 3	ABCDEF	J^{π} : 49.55-keV γ to 0 ⁺ is E2.				
				$T_{1/2}$: by $\alpha \gamma(t)$ in ²³⁸ U decay (1960Be25).				
163.05 [@] 12	4+		ABCDEF	J^{π} : 113.5 γ to 2 ⁺ ; α hindrance factor.				
336.45 [@] 24	6+		CDE	J^{π} : 173.5 γ to 4 ⁺ is E2; energy fit to the band.				
564.7 [@] 3	8+		CDE	J ^{π} : 228.3 γ to 6 ⁺ is E2; energy fit to the band.				
688.38 22	(1 ⁻)		В	J ^{π} : 688.5- and 638.7-keV gammas to 0 ⁺ and 2 ⁺ levels; systematics of 1 ⁻ states.				
810 30	$(0^+)^{\ddagger}$		D					
842.5 [@] 4	10^{+}		CE	J^{π} : 278.2 γ to 8 ⁺ is E2; energy fit to the band.				
995.0 ^{&} 5	(7-)		С					
1150 40	$(0^+)^{\ddagger}$		D					
1164.9 [@] 6	(12^{+})		CE	J^{π} : 317.2 γ to 10 ⁺ ; energy fit to the band.				
1194.8 ^{&} 5	(9 ⁻)		С					
1441.9 ^{&} 5	(11 ⁻)		С					
1470 40	$(0^+)^{\ddagger}$		D					
1526.6 [@] 7	(14^{+})		С					
1731.0 <mark>&</mark> 6	(13-)		С					
1896.3 15	$(1,2^+)$		В	J^{π} : γ rays to 0^+ and 2^+ states.				
1913.0 15	$(1,2^{+})$		В	J^{π} : γ rays to 0^+ and 2^+ .				
1923.4 8	(16+)		C					
2059.2 [°] 7	(15 ⁻)		С					
2351.0 [@] 9	(18^{+})		С					
2422.9 8	(17 ⁻)		С					
2805.1 [@] 11	(20^{+})		С					
2816.6 ^{&} 9	(19 ⁻)		С					
3238.3 ^{&} 11	(21^{-})		С					
3281.4 [@] 12	(22^{+})		С					
3684.3 <mark>&</mark> 12	(23 ⁻)		С					
3775.1 [@] 13	(24^{+})		С					

 † Mostly from (^{136}Xe,X\gamma) based on $\gamma\gamma(\theta)$ and band assignments, unless stated explicitly.

[‡] From (d,⁶Li) reaction data, based on systematics of 0⁺ states, and on angular distributions for transitions to the unresolved 0⁺, 2⁺ states within the bands. # From least squares fit to $E\gamma$.

[@] Band(A): g.s. band.

& Band(B): octupole band.

							$\gamma(^{234}\text{Th})$		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α ^{&}		Comments
49.55	2+	49.55 6		0.0	0^{+}	E2	326	B(E2)(W.u.)=183 16	
163.05	4+	113.5 <i>1</i>		49.55	2^{+}	E2			
336.45	6+	173.4 2	100.0	163.05	4+	E2	1.149		
564.7	8^{+}	228.3 2	100.0	336.45	6+	E2	0.419		
688.38	(1^{-})	638.7 <i>3</i>	59 12	49.55	2^{+}				
		688.5 <i>3</i>	100 14	0.0	0^{+}				

Adopted Levels, Gammas (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}^{\dagger}$	I_{γ} ‡	E_f	\mathbf{J}_f^{π}	Mult. [#]	α &	$I_{(\gamma+ce)}$
842.5	10^{+}	277.8 2	100.0	564.7	8+	E2	0.217	
995.0	(7^{-})	658.4 5	100	336.45	6+			
1164.9	(12^{+})	322.3 5	100.0	842.5	10^{+}	E2 [@]		
1194.8	(9 ⁻)	199.7 5	6.×10 ¹ 3	995.0	(7-)	E2 [@]		59 28
		630.1 5	100 12	564.7	8+	E1 [@]		64 7
1441.9	(11^{-})	247.1 5	100 19	1194.8	(9 ⁻)	E2 [@]		112 <i>21</i>
		599.4 <i>5</i>	72 9	842.5	10^{+}	E1 [@]		62 7
1526.6	(14^{+})	361.8 5	100.0	1164.9	(12^{+})	E2 [@]		584 <i>13</i>
1731.0	(13-)	289.1 5	$1.0 \times 10^2 4$	1441.9	(11^{-})	E2 [@]		67 <i>23</i>
		566.0 5	41 <i>13</i>	1164.9	(12^{+})	E1 [@]		23 7
1896.3	$(1,2^+)$	1847 2	100 17	49.55	2+			
1012.0	$(1, 2^{\pm})$	1896 2	64 15	0.0	0^+			
1913.0	$(1,2^{+})$	1/51 2	64 <i>10</i> 100 <i>20</i>	163.05	4^{+}			
1923 4	(16^{+})	396.8.5	100.0	1526.6	(14^+)	$F2^{@}$		341 14
2059.2	(10^{-})	328.2.5	100.0	1731.0	(11^{-})	$F2^{@}$		59.9
2057.2	(15)	532 7 5	10 4	1526.6	(13^{+})	E^2		52
2351.0	(18^{+})	427.6.5	100.0	1923.4	(1+) (16+)	$F2^{@}$		178 14
2331.0	(10^{-})	363 7 5	100.24	2059.2	(10^{-})	E^2		33.8
2722.)	(17)	499.4.5	10 4	1923.4	(15^{+})	$F1^{@}$		31
2805 1	(20^{+})	454 1 5	100.0	2351.0	(10^{+})	$F2^{@}$		81 14
2816.6	(10^{-})	393.7.5	1.0×10^2 3	2331.0	(10^{-})	E^2		23.6
2010.0	(1))	465.8 ^{<i>a</i>} 5	1.0×10 5	2351.0	(17) (18^+)	62		25 0
3238.3	(21^{-})	421.7 5	100.0	2816.6	(19 ⁻)	E2 [@]		96
3281.4	(22^{+})	476.3 5	100.0	2805.1	(20^{+})	E2 [@]		4 2
3684.3	(23 ⁻)	446.0 5	100.0	3238.3	(21 ⁻)	E2 [@]		34 7
3775.1	(24^{+})	493.7 5	100.0	3281.4	(22^{+})	E2 [@]		197
	(= ·)				()			

γ ⁽²³⁴Th) (continued)

[†] From ²³⁸U α decay, ²³⁴Ac β^- decay and ²³⁴Th(¹³⁶Xe,X γ).

[‡] Relative photon intensity deexciting each level.

[#] E2 multipolarity for the 49.55 and 113.5 γ rays are from ²³⁸U α decay; quadrupole character for the 173.5-, 228.3- 278.2-keV γ rays were deduced by 1989Ge01 from particle- γ angular correlation measurements in ²³²Th(¹⁸O,¹⁶O γ) reaction.

[@] From $\gamma\gamma(\theta)$ in ²³²Th(¹³⁶Xe,X γ).

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*a*} Placement of transition in the level scheme is uncertain.

 $^{234}_{90}\text{Th}_{144}$

Adopted Levels, Gammas

 $^{234}_{90}{\rm Th}_{144}$