²³⁸U(d,⁶Li) **1981Ja01**

History			
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, J. K. Tuli	NDS 108, 681 (2007)	1-Jun-2006

E(d)=54.8 MeV (1981Ja01).

Absolute reduced α widths for the transitions to the ground-state band members were obtained by 1981Ja01 from finite-range distorted-wave analysis. α intensities and reduced hindrance factors deduced from (d,⁶Li) reaction α widths were compared with the α intensities and reduced hindrance factors from ²³⁸U decay. Close agreement between them was interpreted as indicating a predominant direct α -transfer mechanism in (d,⁶Li) reaction.

Angular distributions were measured by 1980Ja09; calculations for angular distributions were done with different r(0) parameters, and compared with their data.

In an earlier work, 1975Be01, the authors measured (d,⁶Li) ground-state cross sections at E(d)=35 MeV on various targets; the α -spectroscopic factors were deduced; their variations with mass numbers were studied.

²³⁴Th Levels

 $E(\beta,d,E)$ Estimated bandhead of a presumed rotational band. No attempts were made to resolve the levels within the proposed K=0 bands.

E(level) 0[#] 0^{+} 50[#] 2^{+} 160[#] 4+ 331[#] 6+ 555[#] 8^{+} 810 30 0^{+} 1150 40 0^{+} 0^{+} 1470 40

[†] From 1981Ja01; the energy resolution is 80 keV FWHM.

[‡] From 1981Ja01. Angular distributions for transitions to the members of the ground-state rotational band were compared by 1981Ja01 with DWBA calculations. Although the levels were not fully resolved, the individual cross sections for these levels were extracted by using peak-fitting procedures. The 2^+ state was found to be populated most intensely. Assignments to the excited 0^+ states were based on systematics of 0^+ states in the actinide region and on predictions from the interacting boson model. Four-point angular distributions for transitions to the unresolved levels within the bands were taken. Comparison with DWBA calculations indicated that L=2 is the dominant component of the unresolved group of levels as was found also for the ground-state band.

[#] Band(A): g.s. band. The 0^+ and 2^+ members were not fully resolved. The energies of 2^+ and 4^+ levels were taken from previous works; the energies of 6^+ and 8^+ states were estimated by 1981Ja01.

²³⁸U(d,⁶Li) 1981Ja01

Band(A): g.s. band

8+ 555

<u>6+ 331</u>

4+ 160

<u>2+</u> 50

0+ 0

 $^{234}_{90}{\rm Th}_{144}$