$^{234}\mathrm{Am}\,\varepsilon$ decay

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	E. Browne, J. K. Tuli	NDS 108, 681 (2007)	1-Jun-2006			

Parent: ²³⁴Am: E=0.0; $T_{1/2}$ =2.32 min 8; Q(ε)=4180 SY; % ε +% β ⁺ decay=99.961 12 Additional information 1.

The observed fission activity was interpreted in 1972Sk03 as due to SF decay of a shape isomer in 234 Pu following ε decay of 234 Am, and confirmed in 1990Ha02 by observation of prompt coincidences between plutonium K x-rays and fission products.

 234 Am ε decay to deformed states in the first well of the potential energy in 234 Pu has not been studied.

²³⁴Pu Levels

E(level)	T _{1/2}	Comments	
0.0			
<4170	<3 ns	E(level): the upper limit on the level energy is from $Q(\varepsilon)=4180$ keV.	
		This level may be complex, comprised of several levels in the second well of the nuclear potential, and	
		connected by the weak 112-, 147-, 168- and 185-keV γ -ray transitions.	
		$T_{1/2}$: plutonium K x-rays and the fission products reported in 1990Ha02 were observed in prompt coincidence,	

thus the inferred limits on the level's half-life of 1×10^{-8} ns $< T_{1/2} < 3$ ns.

ε, β^+ radiations

E(decay)	E(level)	$I(\varepsilon + \beta^+)^{\dagger}$	Comments
(10 <i>SY</i>)	<4170	6.6×10 ⁻³ 18	I ε : the delayed-SF probability was determined in 1990Ha02 as 6.6×10^{-5} 18 from SF/plutonium K x-rays. If the isomeric level decayed also by γ -ray transitions, then I ε >0.0066% 18. The ε branch given here may be the total ε intensity to superdeformed levels in the second well of the nuclear potential.

[†] For absolute intensity per 100 decays, multiply by 0.99961 12.

$\gamma(^{234}Pu)$

Eγ	E_i (level)
<i>x</i> 112 [†]	
^x 147 [†]	
^x 168 [†]	
^x 185 [†]	

[†] Reported in 1990Ha02 in coincidence with fission products. These transitions were found to be very weak, and they should be considered as "not well established ".

 $x \gamma$ ray not placed in level scheme.