238 Cm α decay

		Type Full Evaluation	Author E. Browne, J. K. Tuli	History Citation NDS 108, 681 (2007)	Literature Cutoff Date			
Parent: ²³⁸ Additional		E=0.0; $T_{1/2}$ =2.4 h <i>1</i> ; $Q(\alpha)$ =	,	, , , , , , , , , , , , , , , , , , ,	1 Juli 2000			
			234	Pu Levels				
E(level)	J^{π}	Comments						
0.0 (46 <i>3</i>)	2^+ E(level): the 2^+ state has not been observed. Its energy has been obtained from systematics of 2							
			<u>α</u>	radiations				
Ea	E	laval) La ^{†#} HE [‡]		Comm	aanta			

Εα	E(level)	$I\alpha^{\dagger \#}$	HF^{\ddagger}	Comments
(6464 40)	(46)	30.5 8	1.42 5	$E\alpha$: α transition has not been observed. Its energy has been calculated from $Q(\alpha)$ and the expected level energy.
6520 50	0.0	69.5 8	1.0	

[†] The absolute intensity of 6520α has been estimated here to be 2.67% 12 by requiring an r₀ parameter of 1.4977 19. Systematics of hindrance factors for α decays to first 2⁺ states suggest that HF for a expected, but unobserved, α particle to the 2⁺ state in 234 Pu is 1.42 5. The Ia's per 100 α decays have been obtained here by requiring Hf(2⁺)=1.42 5. I α values to higher levels have been taken to be within the uncertainties given here.

[±] $r_0(^{234}Pu)=1.4977$ *19* has been obtained from $r_0(^{236}Pu)=1.4949$ *18*, $r_0(^{232}U)=1.5103$ *3*, and $r_0(^{234}U)=1.5075$ *2*. [#] For absolute intensity per 100 decays, multiply by 0.0384 *18*.

1