Adopted Levels, Gammas

History													
		Туре		Author	Citation	Literature Cutoff Date							
		Full Evaluation	on E.B	rowne, J. K. Tuli	NDS 108, 681 (2007)	1-Jun-2006							
$Q(\beta^-)=2194\ 5;\ S(n)=5221\ 5;\ S(p)=5682\ 5;\ Q(\alpha)=4077\ 17$ 2012Wa38Note: Current evaluation has used the following Q record.2012Wa38 $Q(\beta^-)=2195\ 4;\ S(n)=5220\ 5;\ S(p)=5681\ 5;\ Q(\alpha)=4110\ SY$ 2003Au03Additional information 1.2012Wa38													
²³⁴ Pa Levels													
Cross Reference (XREF) Flags													
A 234 Th β^- decay B 234 Pa IT decay (1.159 min)													
E(level) [‡]	\mathbf{J}^{π}	T _{1/2}	XREF		Co	omments							
0.0	4+	6.70 h 5	AB	$%β^-=100$ J ^π : log <i>ft</i> values for the $β^-$ decays to the 5 ⁺ , 5 ⁻ , 3 ⁺ , 3 ⁻ , 6 ⁻ levels are consistent only with J ^π =4 ⁺ . Analogy with ²³¹ Pa, ²³³ Pa, ²³⁵ U suggests J ^π =4 ⁺ with π 1/2[530], v 7/2[743] configuration as the main component for the g.s. of ²³⁴ Pa. $β^-$ decay to 5 ⁺ , $π$ 5/2[622], v 5/2[633] state in ²³⁴ U suggests that there might be some admixture of $π$ 3/2[651], v 5/2[622] state in ²³⁴ Pa g.s T _{1/2} : the measured half-lives are 6.7 h (1931Cu01), 6.658 h <i>12</i> (1954Zi02), 6.75 h 3 (1962Bj01). The unweighted average of 6.70 h 5 has been adopted (the weighted average is 6.67 h 3).									
13.92 2	(31)		AB	J [*] : 73.92 γ is (M1+E2). π 1/2[530], ν 7/2[743] configuration proposed by 1973Go40.									
73.92+x	(0 ⁻)	1.159 min <i>11</i>	AB	 %β⁻=99.84 4; %IT=0.16 4 See 1.159-min ²³⁴Pa IT decay for references and methods of obtaining the branching ratios. T_{1/2}: Value recommended in 2004WoZZ: weighted average (Limitation of Relative Statistical Weight procedure) of T_{1/2}=1.175 min <i>3</i> (1951Ba83), 1.25 min <i>10</i> (1956On07), 1.14 min <i>1</i> (1963Bj02), 1.183 min <i>37</i> (1969SaZR). Other value: 1.175 min (1969DeZX). J^π: β feeding from ²³⁴Th to J=0 and J=1 levels in ²³⁴U suggest J<2. J^π=0⁻, π 1/2[520], w 1/2[631] configuration proposed in 1963Bi02. 									
103.42+x	(2 ⁻)	<0.5 ns	A	J^{π} : 29.497 to (0 ⁻) is E2. This level is possibly the $J^{\pi}=2^{-}$ member of a rotational band built on the $J^{\pi}=0^{-}$ state at 73.92+x.									
166.30+x	(1 ⁻)	≤0.1 ns	A	$I_{1/2}$: by $\gamma\gamma(t)$ in z^{-1} in β^{-1} decay. J^{π} : 92.38 γ to (0 ⁻) is M1. K=1, π 1/2[530], ν 1/2[631] configuration proposed in 1965De10 from γ -ray-transition rates to the K=0, π 1/2[530], ν 1/2[631] band. $T_{1/2}$: $\beta\gamma(t)$ in ²³⁴ Th β^{-1} decay.									
166.72+x	$(1^+)^{\dagger}$	0.55 ns 10	A	J^{π} : 92.80 γ to (0 ⁻) is E1. T _{1/2} : $\beta\gamma$ (t) in ²³⁴ Th β^{-} decay.									
177.27+x?			A										
186.73+x	(1^+)		Α	J^{π} : 20.02 γ to (1) is M1+E2; strong γ -ra	y transition to (0^-) level.							

[†] π 3/2[651], ν 1/2[631] and π 1/2[660], ν 1/2[631] are possible configurations for the 166.72+x and 186.73+x levels. [‡] All levels are from ²³⁴Th β^- decay. x<10 keV.

Adopted Levels, Gammas (continued)

$\frac{\gamma(^{234}\text{Pa})}{\text{Final conduct}} = \frac{J_i^{\pi}}{(3^+)} = \frac{E_{\gamma}^{\dagger}}{73.92^{\#} 2} = \frac{I_{\gamma}^{\dagger}}{0.0} = \frac{E_f}{4^+} = \frac{J_f^{\pi}}{(M1+E2)} = \frac{\delta}{0.113} = \frac{\delta}{10.64} = \frac{\alpha^{\ddagger}}{\alpha(L)=7.96} = \frac{1.94}{25; \alpha(M)=1.94} = \frac{1.94}{7; \alpha(N+..)=0.669} = \frac{1.94}{23} = \frac{1.94}{25; \alpha(N)=0.123} = \frac{1.94}{25; \alpha(N)=$

73.92+x	(0 ⁻)	(<10)		73.92 (3 ⁺)				7; α (N+)=0.009 25 α (N)=0.520 18; α (O)=0.124 4; α (P)=0.0235 7; α (Q)=0.00185 3 Transition was not observed. Its energy was deduced from a limit on experimental detection (1973Go40). See ²³⁴ Th β^{-} decay
103.42+x	(2 ⁻)	29.49 2		73.92+x (0 ⁻)	E2		4.40×10 ³	$\begin{array}{l} \rho & \text{decay.} \\ B(E2)(W.u.) > 130. \\ \alpha(L) = 3.22 \times 10^3 5; \\ \alpha(M) = 882 13; \\ \alpha(N+) = 299 5 \\ \alpha(N) = 237 4; \ \alpha(O) = 53.4 8; \\ \alpha(P) = 8.54 13; \end{array}$
166.30+x	(1-)	62.86 2	0.75 12	103.42+x (2 ⁻)	M1+E2	0.33 8	25 5	$\alpha(Q)=0.01691\ 25$ $\alpha(L)=19\ 4;\ \alpha(M)=4.8\ 9;$ $\alpha(N+)=1.7\ 3$ $\alpha(N)=1.30\ 24;\ \alpha(O)=0.30$ $6;\ \alpha(P)=0.054\ 9;$ $\alpha(Q)=0.00277\ 12$ B(M1)(W.u.)>0.00071; B(E2)(W.u.)>2.5
		92.38 1	100 6	73.92+x (0 ⁻)	M1		5.27	$\begin{array}{l} \alpha(L)=3.98 \ 6; \ \alpha(M)=0.960\\ 14; \ \alpha(N+)=0.332 \ 5\\ \alpha(N)=0.257 \ 4; \ \alpha(O)=0.0618\\ 9; \ \alpha(P)=0.01180 \ 17;\\ \alpha(Q)=0.000977 \ 14\\ B(M1)(Wu)>0.042 \end{array}$
166.72+x	(1+)	63.29 2	100 <i>10</i>	103.42+x (2 ⁻)	E1		0.405	B(E1)(W.u.)= 6.2×10^{-4} 14 α (L)= 0.305 5; α (M)= 0.0750 11; α (N+)= 0.0250 4 α (N)= 0.0197 3; α (O)= 0.00447 7; α (P)= 0.000737 11; α (Q)= 3.14×10^{-5} 5
		92.80 2	57 4	73.92+x (0 ⁻)	E1		0.1472	B(E1)(W.u.)=1.12×10 ⁻⁴ 24 α (L)=0.1110 16; α (M)=0.0271 4; α (N+)=0.00910 13 α (N)=0.00716 10; α (O)=0.001643 23; α (P)=0.000281 4; α (Q)=1.370×10 ⁻⁵ 20
177.27+x?		73.92 ^{#@} 103.35-10		$103.42+x (2^{-})$ 73.92+x (0^{-})				
186.73+x	(1 ⁺)	20.02 2 83.30 5 112.81 5	3.6 <i>10</i> 28.6 <i>15</i> 100 <i>8</i>	$166.72 + x (1^{+})$ $103.42 + x (2^{-})$ $73.92 + x (0^{-})$	M1+E2	0.08 2	246 70	

[†] From ²³⁴Th β^- decay.

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

$\gamma(^{234}Pa)$ (continued)

based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[#] Multiply placed.

[@] Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

Legend

Level Scheme

Intensities: Relative photon branching from each level

 $^{234}_{91}$ Pa $_{143}$