$^{238}\mathrm{Am}\,\alpha$ decay

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, J. K. Tuli	NDS 108, 681 (2007)	1-Jun-2006

Parent: ²³⁸Am: E=0.0; $J^{\pi}=1^+$; $T_{1/2}=98 \text{ min } 2$; $Q(\alpha)=6040 50$; $\%\alpha \text{ decay}=1.0\times10^{-4} 4$ Additional information 1.

²³⁴Np Levels

If the ²³⁸Am g.s. configuration, in analogy to ²⁴¹Am proton and ²³⁵U neutron states, were: $J^{\pi}=1^+$: π 5/2[523], ν 7/2[743], and if the ²³⁴Np g.s. configuration were: $J^{\pi}=0^+$; p 5/2[642],n 5/2[633], α decay from ²³⁸Am to ²³⁴Np g.s. would involve spin flips for both proton and neutron states. A hindrance factor of \approx 60 (using I α =100%) for 5940 α is not consistent with such a transition (see 1972E121). Therefore, 5940 α from ²³⁸Am g.s. should feed an excited state.

E(level)	Comments				
0.0 0.0+x	The level fed by the 5940-keV α -particle group from ²³⁸ Am may be the J ^{π} =1 ⁻ : p 5/2[523], n 3/2[631] state. a γ ray between this state and the g.s. (probable J ^{π} =0 ⁺ : π 5/2[642], ν 5/2[633]) is forbidden. If a J ^{π} =1 ⁺ : p 5/2[642], n 3/2[631] state lay below the 1 ⁻ level, then this 1 ⁻ state would preferably deexcite by cascade γ rays.				
	α radiations				
%α=1.0>	$\times 10^{-4}$ 4.				
Ea	E(layel) La [†] HE Comments				

Lu		Iu	111	Commenta
5940	0.0+x	≤100	≥60	E α : From 1972Ah04. HF: $r_0(^{234}Np)=1.502$ has been used in the calculation.

[†] For absolute intensity per 100 decays, multiply by 1.0×10^{-6} 4.