²³⁷Pu α decay (45.43 d) 1979El05

	Histo	ory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	B. Singh, J. K. Tuli, E. Browne	NDS 170, 499 (2020)	8-Oct-2020

Parent: ²³⁷Pu: E=0.0; $J^{\pi}=7/2^-$; $T_{1/2}=45.43$ d 13; $Q(\alpha)=5747.6$ 23; % α decay=0.0042 4

²³⁷Pu-J^π: Assignment in ²³⁷Pu Adopted Levels in the ENSDF database (March 2006 update) is still valid. Configuration=v7/2[743]. ²³⁷Pu-T_{1/2}: Unweighted average of 45.66 d 4 (1994Ta25, K x-ray decay curves); 45.12 d 3 (1981Ba15, x-ray and low-energy γ decay curves); 45.3 d 2 (1977Sm02, K x-ray decay curve); 45.63 d 20 (1957Ho68, γ decay curve). Weighted average is 45.32 d 15, but reduced χ^2 is 39.7 as compared to critical χ^2 =2.6. Value of 45.64 d 4 is given in ²³⁷Pu Adopted Levels in the ENSDF

database (March 2006 update). Others: 44 d 2 (1957Th10), 40 d (1949Ja01).

²³⁷Pu-Q(*α*): From 2017Wa10.

 237 Pu- $\%\alpha$ decay: $\%\alpha$ =0.0042 4 measured by 1979El05. The same value is given in 237 Pu Adopted Levels in the ENSDF database (March 2006 update).

1979El05: ²³⁷Pu source was prepared in ²³⁵U(α ,2n),E=30 MeV at ORNL isochronous cyclotron. Measured E γ , I γ using Ge(Li) detectors. Deduced levels, J^{π} , I(α)/I(ε) ratio, Nilsson assignments.

The decay scheme is basically from 1979El05.

²³³U Levels

E(level) [†]	$J^{\pi \ddagger}$
0.0#	5/2+
40.349 [#] 5	$7/2^{+}$
92.17 [#] 12	$9/2^{+}$
155.31 [#] 9	$11/2^+$
298.75 [@] 13	$(5/2^{-})$
320.74 [@] 13	$7/2^{-}$
353.81 [@] 13	9/2-
397.57 [@] 23	$11/2^{-}$
503.61 ^{&} 11	$7/2^{-}$
561.4? ^{&} 20	(9/2-)

[†] From least squares fit to $E\gamma$ data.

[‡] From the Adopted Levels.

[#] Band(A): v5/2[633] band.

[@] Band(B): *v*5/2[752] band.

[&] Band(C): v7/2[743] band.

α radiations

Two α groups at 5650 20 and 5360 20 keV with relative intensities 21 4 and 79 8, respectively were observed by 1957Th10 (ce). The stronger α group was also seen by 1957Ho68 (ce) at 5340 keV 12. The ratio of total α intensities to the g.s. and the 5/2[752] bands deduced here is $\approx 16/\approx 73$, which is roughly consistent with the measurement by 1957Th10.

$E\alpha^{\dagger}$	E(level)	Ια ^{‡&}	HF [@]
5089.1 31	561.4?	≈0.5	≈17
5147.1 24	503.61	≈5.5	≈3.6
5253.2 24	397.57	≥0.7	≤140
5296.9 24	353.81	≈12.2	≈13

²³⁷Pu α decay (45.43 d) 1979El05 (continued)

α radiations (continued)

$E\alpha^{\dagger}$	E(level)	Ια ^{‡&}	HF [@]	Comments	
5329.9 24	320.74	≈44.7	≈5.8		
5351.8 24	298.75	≈17.4	≈20		
5495.5 24	155.31	≈0.75 [#]	313×10 ¹ 40	HF: deduced by evaluators from I α =0.24 3 (from ²³⁵ U α decay in ENSDF) and r ₀ =1.52410 58 for ²³¹ Th.	
5558.6 24	92.17	≈2.8 [#]	1860 <i>60</i>	HF: deduced by evaluators from I α =1.28 4 (from ²³⁵ U α decay in ENSDF) and r ₀ =1.52410 58 for ²³¹ Th.	
5610.3 23	40.349	≈6.4 [#]	1570 30	HF: deduced by evaluators from I α =3.82 6 (from ²³⁵ U α decay in ENSDF) and r ₀ =1.52410 58 for ²³¹ Th.	
5650.6 23	0.0	≈6.6 [#]	2550 40	HF: deduced by evaluators from I α =4.77 7 (from ²³⁵ U α decay in ENSDF, May 2013 update) and r ₀ =1.52410 58 for ²³¹ Th.	

[†] Deduced from Q(α)=5747.6 23 (2017Wa10), and level energies.

[‡] Deduced by the evaluators from the γ intensities. The intensities of the α transitions to the 5/2[752] and 7/2[743] bands (levels above 155.1 keV) are given as approximate values since these intensities are expected to change somewhat by, as yet, unobserved intraband transitions. Exceptions are noted.

[#] The α intensity to each member of the g.s. band is deduced by evaluators from the hindrance factors for the ²³⁵U α transitions to the ²³¹Th g.s. band members $5/2^+$ to $11/2^+$, which are believed to be analogous to those for ²³⁷Pu decay to ²³³U. The α decay intensities in ²³⁵U decay have been taken from the ²³⁵U α decay dataset in the ENSDF database (May 2013 update). Value of r_0 =1.52410 58 for ²³¹Th was used, based on r_0 parameters in 2020Si16. Total relative α intensity to the g.s. band members $(5/2^+, 7/2^+, 9/2^+, 11/2^+)$ is ≈16.6, as compared to 10.1 *I* for ²³⁵U α decay to g.s. members $(5/2^+, 7/2^+, 9/2^+, 11/2^+)$ in ²³¹Th.

^(a) The nuclear radius parameter $r_0(^{233}U)=1.50884$ 18 is deduced from interpolation (or unweighted average) of radius parameters of the adjacent even-even nuclides (2020Si16).

& For absolute intensity per 100 decays, multiply by 0.000042 4.

$\gamma(^{233}U)$

I γ normalization: Absolute intensities were obtained by 1979El05 from comparison of γ intensities measured in α and ε decays of ²³⁷Pu.

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.	α b	Comments
(40.351 [#] 10)		40.349	7/2+	0.0	5/2+			
(51.5 [#] 5)		92.17	9/2+	40.349	$7/2^{+}$			
(63.4 [@] 2)		155.31	$11/2^{+}$	92.17	9/2+			
(92.1 [#] 5)		92.17	9/2+	0.0	$5/2^{+}$			
(114.92 [@] 10)		155.31	$11/2^+$	40.349	7/2+			
181.8 ^c 10	≈0.8 ^{&}	503.61	7/2-	320.74	7/2-	[M1]	4.06 9	α (K)=3.22 7; α (L)=0.628 14; α (M)=0.152 4 α (N)=0.0409 9; α (O)=0.00995 21; α (P)=0.00192 4; α (Q)=0.000153 4
198.61 20	7.3 10	353.81	9/2-	155.31	11/2+	[E1]	0.1001	$\alpha(\mathbf{K})=0.0786 \ 12; \ \alpha(\mathbf{L})=0.01625 \ 24; \\ \alpha(\mathbf{M})=0.00394 \ 6 \\ \alpha(\mathbf{N})=0.001051 \ 15; \ \alpha(\mathbf{O})=0.000249 \ 4; \\ \alpha(\mathbf{P})=4.51\times10^{-5} \ 7; \ \alpha(\mathbf{O})=2.63\times10^{-6} \ 4$
205.05 20	3.2 8	503.61	7/2-	298.75	(5/2-)	[M1]	2.89	$ \begin{array}{l} \alpha(\mathrm{K}) = 2.30 \; 4; \; \alpha(\mathrm{L}) = 0.447 \; 7; \; \alpha(\mathrm{M}) = 0.1080 \; 16 \\ \alpha(\mathrm{N}) = 0.0291 \; 5; \; \alpha(\mathrm{O}) = 0.00708 \; 11; \\ \alpha(\mathrm{P}) = 0.001365 \; 20; \; \alpha(\mathrm{Q}) = 0.0001089 \; 16 \end{array} $

				237 Pu α c	lecay (45.43 d)	1979El05 (continued)
γ ⁽²³³ U) (continued)						continued)		
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	$\alpha^{\boldsymbol{b}}$	Comments
228.56 20	36.2 15	320.74	7/2-	92.17	9/2+	[E1]	0.0723	$\alpha(K)=0.0571 \ 8; \ \alpha(L)=0.01151 \ 17; \\ \alpha(M)=0.00279 \ 4 \\ \alpha(N)=0.000744 \ 11; \ \alpha(O)=0.000177 \ 3; \\ \alpha(P)=3.22\times10^{-5} \ 5; \ \alpha(Q)=1.94\times10^{-6} \ 3 $
241 [°] 2	≈0.5 ^{&}	561.4?	(9/2-)	320.74	7/2-	[M1]	1.84 5	$\alpha(K)=1.46 4; \alpha(L)=0.284 8; \alpha(M)=0.0686 19$ $\alpha(N)=0.0185 5; \alpha(O)=0.00449 13;$ $\alpha(N)=0.0086(240 - 10); \alpha(O)=0.00449 13;$
258.46 20	16.1 <i>12</i>	298.75	(5/2 ⁻)	40.349	7/2+	[E1]	0.0547	$\alpha(P)=0.000866\ 24;\ \alpha(Q)=6.91\times10^{-9}\ 19$ $\alpha(K)=0.0433\ 7;\ \alpha(L)=0.00857\ 12; \alpha(M)=0.00207\ 3$ $\alpha(N)=0.000553\ 8;\ \alpha(O)=0.0001318\ 19;$
261.66 20	18.1 <i>11</i>	353.81	9/2-	92.17	9/2+	[E1]	0.0532	$\alpha(P)=2.41\times10^{-5} 4; \ \alpha(Q)=1.496\times10^{-6} 21$ $\alpha(K)=0.0422 6; \ \alpha(L)=0.00832 12;$ $\alpha(M)=0.00201 3$ $\alpha(N)=0.000537 8; \ \alpha(O)=0.0001280 18;$
280.40 20	100 2	320.74	7/2-	40.349	7/2+	[E1]	0.0456	$\alpha(P)=2.35\times10^{-3} 4; \ \alpha(Q)=1.458\times10^{-6} 21$ $\alpha(K)=0.0362 5; \ \alpha(L)=0.00707 10;$ $\alpha(M)=0.001705 24$ $\alpha(N)=0.000456 7; \ \alpha(O)=0.0001088 16;$
298.89 20	72.2 18	298.75	(5/2 ⁻)	0.0	5/2+	[E1]	0.0396	$\alpha(P)=2.00\times10^{-3} \ 3; \ \alpha(Q)=1.262\times10^{-6} \ 18$ $\alpha(K)=0.0315 \ 5; \ \alpha(L)=0.00609 \ 9; \alpha(M)=0.001468 \ 21 \alpha(N)=0.000393 \ 6; \ \alpha(O)=9.37\times10^{-5} \ 14;$
305.4 2	2.9 9	397.57	11/2-	92.17	9/2+	[E1]	0.0377	$\alpha(P)=1.728\times10^{-5} 25; \ \alpha(Q)=1.105\times10^{-6} 16$ $\alpha(K)=0.0301 5; \ \alpha(L)=0.00579 9;$ $\alpha(M)=0.001396 20$ $\alpha(N)=0.000373 6; \ \alpha(Q)=8.92\times10^{-5} 13;$
313.34 20	27.8 14	353.81	9/2-	40.349	7/2+	[E1]	0.0357	$\alpha(P)=1.645\times10^{-5}\ 24;\ \alpha(Q)=1.057\times10^{-6}\ 15$ $\alpha(K)=0.0284\ 4;\ \alpha(L)=0.00546\ 8;$ $\alpha(M)=0.001316\ 19$
320.75 20	59.6 <i>18</i>	320.74	7/2-	0.0	5/2+	[E1]	0.0339	$\alpha(N)=0.000352 \ 5; \ \alpha(O)=8.41\times10^{-5} \ 12; \\ \alpha(P)=1.553\times10^{-5} \ 22; \ \alpha(Q)=1.003\times10^{-6} \ 15 \\ \alpha(K)=0.0270 \ 4; \ \alpha(L)=0.00518 \ 8; \\ \alpha(M)=0.001247 \ 18 \\ \alpha(N)=0.000333 \ 5; \ \alpha(O)=7.97\times10^{-5} \ 12; $
411.1 2	1.7 5	503.61	7/2-	92.17	9/2+	[E1]	0.0200	$\alpha(\mathbf{R}) = 0.000000 \ 2.1, \alpha(\mathbf{C}) = 0.0000000000000000000000000000000000$
463.1 2	3.4 10	503.61	7/2-	40.349	7/2+	[E1]	0.01572	$\alpha(P) = 8.56 \times 10^{-6} \ 12; \ \alpha(Q) = 5.83 \times 10^{-7} \ 9$ $\alpha(K) = 0.01267 \ 18; \ \alpha(L) = 0.00231 \ 4;$ $\alpha(M) = 0.000553 \ 8$ $\alpha(N) = 0.0001480 \ 21; \ \alpha(Q) = 3.56 \times 10^{-5} \ 5;$
503.9 2	6.9 13	503.61	7/2-	0.0	5/2+	[E1]	0.01328	$\alpha(\mathbf{R}) = 0.0001430 \ 21, \ \alpha(\mathbf{C}) = 5.50 \times 10^{-5} \ 5, \\ \alpha(\mathbf{P}) = 6.66 \times 10^{-6} \ 10; \ \alpha(\mathbf{Q}) = 4.63 \times 10^{-7} \ 7 \\ \alpha(\mathbf{K}) = 0.01073 \ 15; \ \alpha(\mathbf{L}) = 0.00193 \ 3; \\ \alpha(\mathbf{M}) = 0.000463 \ 7 \\ \alpha(\mathbf{D}) = 0.000463 $
521.1 ^c 20	≈0.8	561.4?	(9/2-)	40.349	7/2+	[E1]	0.01244 20	$\alpha(N)=0.0001239 \ 18; \ \alpha(O)=2.98\times10^{-5} \ 5; \\ \alpha(P)=5.59\times10^{-6} \ 8; \ \alpha(Q)=3.95\times10^{-7} \ 6 \\ \alpha(K)=0.01005 \ 16; \ \alpha(L)=0.00180 \ 3; \\ \alpha(M)=0.000432 \ 7 \\ \alpha(N)=0.0001156 \ 19; \ \alpha(O)=2.78\times10^{-5} \ 5; \\ \alpha(P)=5.22\times10^{-6} \ 9; \ \alpha(Q)=3.71\times10^{-7} \ 6 \\ \end{array}$

Continued on next page (footnotes at end of table)

²³⁷Pu α decay (45.43 d) 1979El05 (continued)

$\gamma(^{233}\text{U})$ (continued)

[†] Measurements of 1979El05 (semi).

[‡] Measurements of 1979E105. I γ =100 corresponds to 21.8 *17* photons per 100 α decays.

[#] From the Adopted Gammas.

[@] This γ is shown in the decay scheme of 1979El05, as expected, but not observed. Evaluators do not include this γ in the Adopted dataset, as it is not confirmed in any other study.

 $^{\&}\gamma$ ray was obscured by the presence of neighboring background radiation (1979El05).

^{*a*} For absolute intensity per 100 decays, multiply by 9.2×10^{-6} 11.

^b Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^c Placement of transition in the level scheme is uncertain.

 $^{233}_{92}U_{141}$ -5

²³⁷Pu α decay (45.43 d) 1979El05

 $^{233}_{\ 92}U_{141}$