²³³₉₁Pa₁₄₂

232 Th(³He,d),(α ,t)1975El03HistoryHistoryFull EvaluationB. Singh, J. K. Tuli, E. BrowneNDS 170, 499 (2020)Literature Cutoff Date8-Oct-2020

1975E103: (³He,d),E(d)=28.5 MeV and (α,t) ,E (α) =30 MeV beams from the University of Rochester Emperor Tandem accelerator. The spectra of deuterons and tritons recorded with an Enge split-pole magnetic spectrometer. Deuterons were detected at 60° with FWHM=18 keV, and tritons at 45° with FWHM=16 keV. DWBA analysis.

2014Gu04, 2013Gu10, 2012Gu21: $E(^{3}He)=24$ MeV, measured continuum γ rays, (particle) γ -coin using CACTUS γ -detector array at Oslo cyclotron facility.; deduced γ -strength functions and M1 scissors resonances.

²³³Pa Levels

R=[$d\sigma/d\Omega(\alpha,t)$]/[$d\sigma/d\Omega(^{3}\text{He},d)$], measured cross sections.

E(level)	J^{π^+}	L‡	$d\sigma/d\Omega \ (\mu b/sr)^{\#}$	Comments
0 <mark>&</mark>	3/2-	(1)	9.0 9	$d\sigma/d\Omega(\alpha,t)=10.0 \ \mu b/sr \ 25. \ R=1.1 \ 3.$
57 <mark>&</mark> 1	7/2-	(3)	8.6 9	$d\sigma/d\Omega(\alpha,t)=24.0 \ \mu b/sr \ 20. \ R=2.8 \ 4.$
107 ^a 2	7/2+&9/2+	(4)	4.7 6	$d\sigma/d\Omega(\alpha,t)=10.8 \ \mu b/sr \ 19. \ R=2.3 \ 5.$
173 ^a 1	$13/2^{+}$	(6)	16.6 12	$d\sigma/d\Omega(\alpha,t)=53 \ \mu b/sr \ 6. \ R=3.2 \ 4.$
298 <mark>bc</mark> 3	$7/2^+\&(7/2^-)$	(4+3)	1.6 4	$d\sigma/d\Omega(\alpha,t)=4.2 \ \mu b/sr \ 7. \ R=2.6 \ 8.$
355 <mark>b</mark> 2	(9/2-)	(5)	6.3 8	$d\sigma/d\Omega(\alpha,t)=22.5 \ \mu b/sr \ 24. \ R=3.6 \ 6.$
421? ^b 4	$(11/2^{-})$	(5)	0.4 2	$d\sigma/d\Omega(\alpha,t) = (1.3 \ \mu b/sr \ 4). R = 3.3 \ 19.$
450 2			3.3 6	$d\sigma/d\Omega(\alpha,t)=6.3 \ \mu b/sr \ 17.$
529 2	$(13/2^+)$	(6)	3.6 6	$d\sigma/d\Omega(\alpha,t)=9.1 \ \mu b/sr \ 7. \ R=2.5 \ 5.$
7 00 C ((10)(0)			Probable 1/2[660] state.
589° 4	$(13/2^+)$	(6)	0.4 2	$d\sigma/d\Omega(\alpha,t)=1.3 \ \mu b/sr \ 4. \ R=3.3 \ 19.$
670 [@] 3	3/2-	(1)	2.6 5	$d\sigma/d\Omega(\alpha,t) = (1.3 \ \mu b/sr \ 3). R = 0.5 \ 2.$
704 [@] 3	5/2-	(3)	1.5 4	$d\sigma/d\Omega(\alpha,t)=2.6 \ \mu b/sr \ 4. \ R=1.7 \ 5.$
749 [@] 1	7/2-	(3)	21.7 15	$d\sigma/d\Omega(\alpha,t)=29.2 \ \mu b/sr \ 24. \ R=1.3 \ 2.$
803? [@] 4	9/2-	(5)	0.9 3	$d\sigma/d\Omega(\alpha,t)=1.6 \ \mu b/sr \ 4. \ R=1.8 \ 7.$
852 4			1.8 4	
871 [@] 2	$11/2^{-}$	(5)	3.0 4	$d\sigma/d\Omega(\alpha,t)=6.5 \ \mu b/sr \ 11. R=2.2 \ 5.$
990 4			1.8 4	
1143 <i>3</i>			4.4 6	
1179 <i>3</i>			4.1 6	
1240 <i>3</i>			2.7 5	
1274? 5			0.9 3	
1318 4			1.5 4	
1358 4			1.2 3	
1403 <i>3</i>			3.5 6	

[†] From comparison of measured and calculated cross sections for different band members (fingerprint method).

[‡] From (³He,d) and (α ,t) cross section ratios, the values are expected to be within one unit of angular momentum.

[#] For (³He,d) at 60°. the (α ,t) cross sections at 45° are given under comments. see 1975El03 for calculated d $\sigma(\alpha,t)/d\sigma(^{3}He,d)$ ratios and calculated differential cross sections in both reactions for band members (up to 11/2⁻ for negative parity states and 13/2⁺ for positive parity states) of 1/2[530], 5/2[523], 3/2[521], 3/2[651], 1/2[660] and 5/2[642] configurations.

[@] Member of $\pi 3/2[521]$ configuration.

[&] Member of $\pi 1/2[530]$ configuration.

^{*a*} Member of $\pi 3/2[651]$ configuration.

^{*b*} Member of $\pi 5/2[523]$ configuration.

^{*c*} Probable member of $\pi 5/2[642]$ configuration.