$^{232}_{92}U_{140}$ -1

$^{236}\mathbf{Pu}~\alpha$ decay 1994Ar08

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne	NDS 107, 2579 (2006)	1-Nov-2004

Parent: ²³⁶Pu: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=2.858$ y 8; $Q(\alpha)=5867.07$ 8; $\%\alpha$ decay=100.0 ²³⁶Pu source produced by ²³⁸U(p,3n)²³⁶Np(22.5 h), which decays to ²³⁶Pu. Chemical separation of plutonium. Measured E γ , $I\gamma$, $\gamma\gamma$ coin using Germanium detectors. Others: 1956Hu96, 1963Le17.

²³²U Levels

E(level)	J^{π}	T _{1/2}	Comments
0.0^{\dagger}	0^{+}		
47.58 [†] 2	2^{+}	254 ps 20	$T_{1/2}$: delayed coincidence measurement (1960Be25).
156.54 [†] 3	4+		
322.65 [†] 6	6+		
540.7 [†] 1	8+		
563.2 [‡] 2	1-		
629.0 [‡] 1	3-		No alpha particle group feeds this level (I $\alpha < 1 \times 10^{-6}$ %).
691.45 [#] 4	0^{+}		
734.56 [#] 6	2^{+}		
746.8 [‡] 1	5-		
833.5 [#] 2	4+		
866.9 [@] 1	2^{+}		
927.3 ^{&} 1	(0^{+})		
967.6 ^{&} 1	(2^{+})		

[†] Band(A): $K^{\pi}=0^+$ g.s. rotational band.

^{\ddagger} Band(B): K^{π}=0⁻ Octupole vibrational band.

[#] Band(C): $K^{\pi}=0^+$ Beta vibrational band.

^(a) Band(D): $K^{\pi}=2^+$ Gamma vibrational band. ^(b) Band(E): $K^{\pi}=(0^+)$ Two-phonon octupole vibrational band.

α radiations

Eα	E(level)	$\mathrm{I}\alpha^{\ddagger}$	HF	Comments
4816.4	967.6	1.53×10^{-5}	6.7	
4856.0	927.3	1.33×10^{-5}	15	
4915.4	866.9	1.21×10 ⁻⁵ 6	41	
4948.2	833.5	6×10 ⁻⁷	1400	Iα: Assuming an E0 intensity of $(3.2 \times 10^{-7} 9 \%)$ for the 677-keV γ ray, and a total photon intensity of ≈2.7×10 ⁻⁷ % for the sum of all the γ rays that de-excite the 833-keV level (1994Ar08).
5033.5	746.8	2.46×10^{-6}	1260	
5045.5	734.56	1.3×10 ⁻⁵ 1	286	
5087.9	691.45	5.8×10 ⁻⁴ 10	12	
5214.0	563.2	2.6×10 ⁻⁴ 1	171	
5236.1	540.7	1.3×10 ⁻⁵ 2	4690	
5450.4	322.65	1.85×10^{-3}	639	
5613.7	156.54	0.23	44	

$^{236}\mathbf{Pu}~\alpha$ decay 1994Ar08 (continued)

 α radiations (continued)

Εα	E(level)	$I\alpha^{\ddagger}$	HF
5720.87 [†] 10	47.58	30.8 [†] 3	1.3
5767.53 [†] 8	0.0	69.1 [†] 3	1.0

[†] Values recommended in 1991Ry01. Others: 1976BaZZ, 1979Ry01, 1984Ry02. [‡] Absolute intensity per 100 decays.

$\gamma(^{232}U)$

E_{γ}	Ι _γ ‡#	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ	$\alpha^{@}$	$I_{(\gamma+ce)}^{\#}$	Comments
47.57 2	0.065	47.58	2+	0.0	0^{+}	E2		468		$\alpha(L)=342; \ \alpha(M)=94$
108.95 2	0.0225	156.54	4+	47.58	2+	E2		9.2		α (L)=6.62; α (M)=1.84; α (N+)=0.692
166.09 5	7.35×10^{-4} 2	322.65	6+	156.54	4+	E2		1.56		α (K)=0.204; α (L)=0.99; α (M)=0.273; α (N+)=0.101
218.0 <i>I</i>	8.4×10 ⁻⁶ 1	540.7	8+	322.65	6+	E2		0.558		$\alpha(K)=0.136; \alpha(L)=0.307; \alpha(M)=0.084; \alpha(N+)=0.0312$
338.5 1	7.2×10 ⁻⁶ 1	967.6	(2 ⁺)	629.0	3-	[E1]		0.0304		$\alpha(K)=0.0243; \ \alpha(L)=0.00462; \ \alpha(M)=0.00110; \ \alpha(N+)=0.00039$
364.0 1	1.09×10 ⁻⁵ 15	927.3	(0+)	563.2	1-	[E1]		0.0260		α (K)=0.0208; α (L)=0.00392; α (M)=0.00094; α (N+)=0.00033
404.46 10	5.5×10 ⁻⁶ 1	967.6	(2+)	563.2	1-	[E1]		0.0209		$\alpha(K)=0.0168; \alpha(L)=0.00310; \alpha(M)=0.00074; \alpha(N+)=0.00026$
423.85 20	6.3×10 ⁻⁷ 1	746.8	5-	322.65	6+	[E1]		0.0189		$\alpha(K)=0.0152; \ \alpha(L)=0.00280; \ \alpha(M)=0.00067; \ \alpha(N+)=0.00024$
472.34 10	2.5×10 ⁻⁶ 2	629.0	3-	156.54	4+	E1		0.0152		$\alpha(K)=0.0122; \alpha(L)=0.00222; \alpha(M)=0.00053; \alpha(N+)=0.00019$
515.58 2	1.63×10^{-4} 5	563.2	1-	47.58	2+	E1		0.0127		$\alpha(K)=0.0103; \alpha(L)=0.00185$
563.19 2	$1.14 \times 10^{-4} 4$	563.2	1-	0.0	0^{+}	E1		0.0107		$\alpha(K)=0.0087; \alpha(L)=0.00155$
577.95 10	$1.2 \times 10^{-6} 2$	734.56	2^{+}	156.54	4+	[E2]		0.0342		$\alpha(K)=0.0224; \ \alpha(L)=0.0089$
581.41 10	4.1×10 ⁻⁶ 2	629.0	3-	47.58	2+	E1		0.0101		$\alpha(K)=0.00817; \alpha(L)=0.00145$
590.28 10	1.8×10 ⁻⁶ 1	746.8	5-	156.54	4+	[E1]		0.0098		$\alpha(K)=0.00795; \alpha(L)=0.00141$
643.87 <i>3</i>	2.25×10^{-4} 9	691.45	0^{+}	47.58	2+	[E2]		0.0270		$\alpha(K)=0.0184; \ \alpha(L)=0.00650$
677.0 2	9.5×10 ⁻⁸ 4	833.5	4+	156.54	4+	[E0]+E2				
687.04 10	2.3×10^{-6} 1	734.56	2^{+}	47.58	2^{+}	E0+E2			6.8×10 ⁻⁶ 20	
691.3 ^{&} 1		691.45	0^{+}	0.0	0^{+}	E0			3.5×10 ⁻⁴ 10	$I_{(\gamma+ce)}$: From 1963Le17.
710.1 <i>3</i>	3.2×10^{-7} I	866.9	2+	156.54	4+	E2		0.0221		$\alpha(K)=0.0155; \alpha(L)=0.00495$
734.55 10	3.08×10 ⁻⁶ 13	734.56	2+	0.0	0^{+}	[E2]		0.0206		$\alpha(K)=0.0146; \alpha(L)=0.00452$
811.26 20	9.4×10 ⁻⁷ 1	967.6	(2^{+})	156.54	4+	[E2]		0.0169		$\alpha(K)=0.0123; \alpha(L)=0.00348$
819.27 10	6.0×10 ⁻⁶ 2	866.9	2+	47.58	2+	E2		0.0166		$\alpha(K)=0.0121; \alpha(L)=0.00340$
866.88 10	4.9×10 ⁻⁶ 3	866.9	2+	0.0	0^{+}	E2		0.0148		$\alpha(K)=0.0109; \alpha(L)=0.00295$
879.9 <i>1</i>	2.1×10 ⁻⁶ 1	927.3	(0^{+})	47.58	2+	[E2]		0.0144		$\alpha(K)=0.0106; \alpha(L)=0.00284$
920.23 20	9.6×10 ⁻⁷ 1	967.6	(2^{+})	47.58	2^{+}	M1+E2	1.14 20	0.030 4		$\alpha(K)=0.024 \ 3; \ \alpha(L)=0.0049 \ 6$
^x 927.69 20	$3.6 \times 10^{-7} 4$									
967.9 <i>3</i>	$3.5 \times 10^{-7} 8$	967.6	(2^{+})	0.0	0^{+}	[E2]		0.0120		α (K)=0.0090; α (L)=0.00226

[†] From Adopted Gammas. [‡] I γ are per 100 decays of ²³⁶Pu. Relative experimental values normalized to an absolute scale from a decay scheme γ -ray transition intensity balance using Iα(g.s.)=69.1 % 3 (1994Ar08).

[#] Absolute intensity per 100 decays.

^(a) Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies,

 236 Pu α decay 1994Ar08 (continued)

 $\gamma(^{232}\text{U})$ (continued)

assigned multipolarities, and mixing ratios, unless otherwise specified.

[&] Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

4

 $^{232}_{92}U_{140}$ -5

²³⁶Pu α decay 1994Ar08

 $^{232}_{92}U_{140}$