Coulomb excitation: Li 1993Mc07,2000Gu22

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne	NDS 107,2579 (2006)	1-Nov-2004

Coulomb excitation with light ions.

²³²Th(α, α'), E α =18 MeV. Measured E γ , I γ at θ =0°, 55°, and 90°. Detector: Ge(Li), FWHM=1.8 keV at 1332 keV. Deduced γ -ray multipolarities, mixing ratios, B(E2) (1993Mc07).

²³²Th(¹⁶O,¹⁶O'), E=80 MeV. Measured Ey, Iy. Detector: yrast ball, an array with four Clover detectors and seventeen hyperpure Ge detectors. Deduced B(E2) (2000Gu22).

Others: 1970Je04, 1972McYP, 1972McYT, 1973Ei02, 1974Mc15, 1975DaZJ.

²³²Th Levels

B(E2) and B(E3) experimental values are from 1993Mc07, unless otherwise specified.

E(level) [‡]	Jπ†	Comments
0.0#	0^{+}	
49.370 [#] 9	2+	B(E2)↑=9.21 9 (1973Be44,1974Ba43)
162.123 [#] 22	4 ⁺	$B(E4)\uparrow=1.8 \ 4 \ (1974Ba43)$ BE4=1.5 4 \ (1973Be44).
333.29 [#] 7	6+	
556.90 [#] 10	8+	
714.43 ^a 10	1-	
730.65 [@] 20	0^{+}	
774.42 ^a 9	3-	B(E3)↑=0.54 5
774.44 [@] 13	2+	B(E2)↑=0.086 14
785.27 ^{&} 10	2+	B(E2)↑=0.147 7
826.79 [#] 13	10^{+}	
829.6 <mark>&</mark> <i>3</i>	3+	
872.99 [@] 21	4+	
883.74 ^a 9	5-	
890.48 ^{&} 10	4+	
1023.34 [@] 8	6+	
1042.87 ^a 11	7-	
1050.97 ^{&} 12	6+	
1053.93 ^c 14	(2^+)	B(E2)↑=0.00166 <i>17</i>
1072.4 3	(2^{+})	B(E2)↑=0.0010 17
1077.94 22	1	
1078.05 14	0* 2+	$B(F2)\uparrow=0.00117.12$
$1105 68^{b} 8$	3-	$B(E3)^{+}=0.250 \ I8$
$1121.68^{d}.9$	2+	$B(F2)^{+}=0.0041.6$
1182.61 18	3-	$B(E3)\uparrow=0.039\ 3$
1208.79 ^b 8	5-	
1223? ^d 1249.58 ^a 13 1293.0 3	(4 ⁺) 9 ⁻ 5 ⁻	J^{π} : Not adopted.
1322.3 <i>3</i> 1327.37 <i>18</i> 1352.23 ^e <i>14</i>	2^+ 2^+ 0^+	B(E2) $\uparrow=0.00220$ 22 B(E2) $\uparrow=0.00113$ 13 J^{π} : Not adopted.
	-	

Continued on next page (footnotes at end of table)

Coulomb excitation: Li 1993Mc07,2000Gu22 (continued)

²³²Th Levels (continued)

E(level) [‡]	$J^{\pi \dagger}$	T _{1/2}	Comments
1387.08 11	2+		B(E2)↑=0.0105 8
1413.77 f 22 1466.42 e 11	4^+ 4^+	2.2 ps 5	$T_{1/2}$: From Adopted Levels.
1477.01 18	2^{+}		B(E2)↑=0.0059 8
1553.85 ^g 13	2+		B(E2) \uparrow =0.0279 20 1993Mc07 assigned this state as possible candidate for a two-phonon state. This assignment has

not been confirmed in 2000Gu22.

- [†] J^{π} and configuration assignments are based on rotational structure, γ -ray angular distributions ($\gamma(\theta)$), Coulomb excitation cross sections (B(E2) values), and on comparisons of experimental γ -ray reduced transition probability ratios with theoretical values (1993Mc07,2000Gu22).
- [‡] Deduced by evaluator from a least-squares fit to γ -ray energies.
- [#] Band(A): $K^{\pi}=0^+$ Ground State Rotational Band.
- [@] Band(B): $K^{\pi}=0^+$ Beta Vibrational Band.
- [&] Band(C): $K^{\pi}=2^+$ Gamma Vibrational Band.
- ^{*a*} Band(D): $K^{\pi}=0^{-}$ Vibrational Band.
- ^{*b*} Band(E): $K^{\pi}=2^{-}$ Octupole Vibrational Band.
- ^{*c*} Band(F): $K^{\pi}=(2^+)$ Vibrational Band. ^{*d*} Band(G): $K^{\pi}=0^+$ Vibrational Band.
- ^{*e*} Band(H): $K^{\pi}=0^+$ Vibrational Band.
- ^{*f*} Band(I): $K^{\pi} = 4^+$ Two-phonon $\gamma \gamma$ Vibrational Band.
- ^{*g*} Band(J): $K^{\pi} = (0,1)^+$ Vibrational Band.

$\gamma(^{232}\text{Th})$

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	Comments
49.369 9		49.370	2^{+}	0.0	0^{+}		E_{α} : From Adopted Gammas.
112.75 2		162.123	4+	49.370	2+		E_{γ} : From Adopted Gammas.
159.2 1	6.9 10	1042.87	7^{-}	883.74	5-		
171.2 ^{&} 1	1.00×10^3 15	333.29	6+	162.123	4+		Excitation yield per nC=14.3.
206.8 1	2.4 4	1249.58	9-	1042.87	7-		5 1
223.6 ^{&} 1	128 19	556.90	8+	333.29	6+		
268.4	< 0.7	1053.93	(2^{+})	785.27	2^{+}		
269.8 1	9.6 15	826.79	10^{+}	556.90	8+		
279.5 <i>3</i>	1.7 6	1053.93	(2^{+})	774.44	2^{+}		
323.2 2	2.1 3	1053.93	(2^{+})	730.65	0^{+}		
325.0 1	4.5 7	1208.79	5-	883.74	5-		
331.3 <i>I</i>	13.3 20	1105.68	3-	774.42	3-		Excitation yield per nC=15.9.
347.2 1	6.0 9	1121.68	2^{+}	774.42	3-	E1	Excitation yield per nC=2.87.
364.2 1	9.8 15	1078.63	0^{+}	714.43	1-		
391.3 <i>3</i>	1.7 3	1105.68	3-	714.43	1-		
407.3 1	7.4 11	1121.68	2^{+}	714.43	1-		
408.2 [‡] 3		1182.61	3-	774.44	2^{+}	E1	Excitation yield per nC=2.7.
422.7 1	3.4 5	1249.58	9-	826.79	10^{+}		
434.3 2	1.6 5	1208.79	5-	774.42	3-		
466.7 2	0.6 1	1023.34	6+	556.90	8+		
486.0 <mark>&</mark> 1	4.5 7	1042.87	7-	556.90	8+		
539.7 [‡] 3		872.99	4+	333.29	6+		Excitation yield per nC=2.48.
550.4 ^{&} 1	243 36	883.74	5-	333.29	6+		Excitation yield per nC=13.3.
582.6 <i>1</i>	4.1 6	1466.42	4+	883.74	5-		

Continued on next page (footnotes at end of table)

			Coulon	nb excitation:	Li 1993M	c07,2000Gu22 (d	continued)
				<u>γ</u>	(²³² Th) (cont	inued)	
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [#]	$\delta^{\#}$	Comments
584.2 2	3.0 5	1413.77	4+	829.6 3+			
612.3 [‡] 3		774.42	3-	162.123 4+	E1		Excitation yield per nC=468.
$612.3^{\ddagger \alpha}$ 3	14.2	774.44	$2^+_{2^+}$	$162.123 \ 4^+$	E2		Excitation yield per nC=177.
623.1.7	14.5	785.27	2+ 2+	1/4.42 3 162.123 4 ⁺	E2		Excitation yield per $nC=10.9$
628.5 2	10.2 15	1413.77	$\frac{1}{4}$	785.27 2+	22		Excitation yield per ne 10.9.
637.8 1	7.0 10	1352.23	0^{+}	714.43 1-			
$656.7^{\ddagger a}_{\ddagger a}$ 3	<1.5	1387.08	2+	730.65 0^+	E2		Excitation yield per nC=1.48.
665.0 ^{‡&} 3		714.43	1-	49.370 2+	F 1		Excitation yield per $nC=63.4$.
6/2.6 I	/./ 11	1387.08	21	/14.43 1	EI E2		Excitation yield per $nC=3.68$.
$681.0^{\circ} \neq a^{\circ} 3$		1553.85	2 ' 0 +	872.99 4	E2		Excitation yield per $nC=2.0$ LE.
681.1 + 3 690.0.1	9014	1023 34	0' 6+	$49.370 2^{+}$ 333.29 6 ⁺			Excitation yield per $nC=21.0$.
691.9 2	1.6 3	1466.42	4 ⁺	774.44 2+			
702.6 [‡] 3		1477.01	2+	774.44 2+	M1+E2	2.0 5	Excitation yield per nC=4.19.
711	13 4	872.99	4+	162.123 4+			E_{γ} : From level energy difference.
714.4 [‡] 3		714.43	1-	$0.0 0^+$			Excitation yield per nC=11.1.
717.7 1	20.7 31	1050.97	6'	333.29 6	F 1		
$725.0^{\ddagger 22}$		774.42	3 2+	49.370 2	EI M1+E2	15,115	Excitation yield per $nC = /2.6$.
725.0*** 5	207 21	//4.44	2 · 4 +	$49.370 2^{+}$	MIT+E2	-1.5 +11-5	Excitation yield per $nC=39.0$.
$726.1\frac{10}{28}$	207 31	090.40 795 07	4 2+	$102.123 \ 4$	M1 + E2	10.8 + 5 11	Excitation yield per $nC=10.8$.
750.1° 5 768 5 @ $\ddagger a$ 3		1553.85	2 2+	49.370 2	M1 + E2	~6	Excitation yield per $nC=3.0$
708.5 · 5		774 44	2 2+	0.0 0+	F_2	≈0	Excitation yield per $nC=201$
779.6 3	12 2	1553.85	$\frac{2}{2^{+}}$	774.44 2 ⁺	M1+E2	2.5 5	Excitation yield per $nC=2.91$. Excitation yield per $nC=7.0$.
785.5 ^{‡&} 3		785.27	2^{+}	$0.0 0^+$	E2		Excitation yield per nC=625.
823.5 ^{@‡a} 3		1553.85	2+	730.65 0+	E2		Excitation yield per nC=12.9.
823.6 ^{‡&} 3		872.99	4+	49.370 2+			Excitation yield per nC=2.0.
839.4 1	5.8 9	1553.85	2+	714.43 1-	E1		Excitation yield per nC=3.4.
840.7 [‡] 3	20.0.50	890.48	4 ⁺	$49.370 \ 2^{+}$			Excitation yield per nC=3.0.
861.2 <i>1</i> 875.6 2	30.0 50	1023.34	5-	$162.123 4^{+}$ 333.29 6 ⁺			
888.4 5	5.2 8	1050.97	6+	$162.123 \ 4^+$			
889.5 ^a 3	4.3 6	1223?	(4^{+})	333.29 6+			
891.9 [‡] <i>3</i>		1053.93	(2^{+})	162.123 4+	(E2)		Excitation yield per nC=0.88.
932.3 [‡] <i>3</i>		1094.40	2+	162.123 4+			Excitation yield per $nC=3.30$.
943.5 1	34 5	1105.68	3^{-} 2 ⁺	$162.123 \ 4^+$ $162.123 \ 4^+$	F2		Excitation yield per $nC=24.3$.
959.5 Z	20 5	121.00	2 5 ⁻	333.29 6+	12		Excitation yield per $nC=4.0$
$1004.6^{\ddagger}.3$		1053.03	(2^+)	$49 370 2^+$	(M1+F2)	264	Excitation yield per $nC=7.63$
$1004.0 \ 5$ $1020 \ 5^{\ddagger} \ 3$		1182 61	3-	$162\ 123\ 4^+$	(IVII L2) F1	2.0 4	Excitation yield per $nC=4.14$
1023.0^{\ddagger} 3		1072.4	(2^+)	49.370 2+	(M1+E2)	4.4.10	Excitation yield per $nC=6.25$.
1028.5 [‡] 3		1077.94	1-	49.370 2+	(Excitation yield per $nC=4.4$.
1029.2		1078.63	0^{+}	49.370 2+			
1045.0 [‡] 3		1094.40	2+	49.370 2+	M1+E2	-3.7 +34-17	Excitation yield per nC=3.70.
1046.7 1	47 7	1208.79	5-	162.123 4+			
1054.0 7 3		1053.93	(2+)	0.0 0+	(E2)		Excitation yield per nC=2.36.
1056.4 ⁴ <i>x</i> 3		1105.68	3-	49.370 2+			Excitation yield per nC=127.0.
1072.6 ⁺ 3		1121.68	2+	49.370 2+	M1+E2	1.45 16	Excitation yield per nC=10.2.

Continued on next page (footnotes at end of table)

1993Mc07,2000Gu22 (continued)

Coulomb excitation: Li

						~(²³² Th) (continued)	
						γ(III) (continued)	
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	$\delta^{\#}$	Comments
1078.0 [‡] 3		1077.94	1^{-}	0.0	0^{+}			Excitation yield per nC=1.7.
1122.0 [‡] 3		1121.68	2^{+}	0.0	0^{+}	E2		Excitation yield per nC=1.94.
1133.2 [‡] <i>3</i> 1133.5 <i>2</i>	4.7 9	1182.61 1466.42	3- 4+	49.370 333.29	2+ 6+	E1		Excitation yield per nC=16.5.
1165.1 [‡] 3 1225.1 3	9 <i>3</i>	1327.37 1387.08	2^+ 2^+	162.123 162.123	4+ 4+	E2 E2		Excitation yield per $nC=1.74$. Excitation yield per $nC=13.2$.
1277.8 [‡] 3 1304.3 ^a	<4	1327.37 1466.42	2+ 4+	49.370 162.123	2+ 4+	(M1+E2)		Excitation yield per nC=1.02.
1322.3 [‡] <i>3</i>		1322.3	2^{+}	0.0	0^{+}	E2		Excitation yield per nC=7.74.
1327.7 [‡] 3		1327.37	2^{+}	0.0	0^{+}	E2		Excitation yield per nC=1.19.
1337.8 [‡] <i>3</i>		1387.08	2^{+}	49.370	2+	M1+E2	-1.5 5	Excitation yield per nC=7.69.
1387.2 [‡] 3		1387.08	2^{+}	0.0	0^{+}	E2		Excitation yield per nC=5.37.
1391.9 ^{@‡a} 3		1553.85	2^{+}	162.123	4+	E2		Excitation yield per nC=5.40.
1427.6 [‡] 3		1477.01	2^{+}	49.370	2+			Excitation yield per nC=0.6 LE.
1477.0 [‡] 3		1477.01	2^{+}	0.0	0^{+}	E2		Excitation yield per nC=9.95.
1504.6 ^{@‡a} 3		1553.85	2^{+}	49.370	2+	M1+E2	-2.7 +26-12	Excitation yield per nC=4.75.
1554.0 ^{@‡a} 3		1553.85	2^{+}	0.0	0^{+}	E2		Excitation yield per nC=4.18.

[†] From 2000Gu22, unless otherwise specified. [‡] From 1993Mc07. Uncertainties not given. Evaluator has estimated $\Delta E=0.3$ keV for all γ rays, unless otherwise specified.

[#] From $\gamma(\theta)$ in 1993Mc07. ^(a) Not seen by 2000Gu22 (I γ <0.5). [&] Observed in coincidence with thorium K x ray.

^{*a*} Placement of transition in the level scheme is uncertain.

 $^{232}_{90}{\rm Th}_{142}$

Coulomb excitation: Li 1993Mc07,2000Gu22

 $^{232}_{90}{
m Th}_{142}$

Coulomb excitation: Li 1993Mc07,2000Gu22

 $^{232}_{90}{\rm Th}_{142}$

Coulomb excitation: Li 1993Mc07,2000Gu22 (continued)

				Band(J): K ^π =(0 Vibrational B		
Band(H Vibrati	H): K ^π =0 ⁺ ional Band		2 ⁺	1553.8		
4+	1466.42					
		Band Two- Vibra	(I): $\mathbf{K}^{\pi}=4^{+}$ phonon $\gamma\gamma$ tional Band			
		4+	1413.77			

Band(G): K^π=0⁺ Vibrational Band <u>0+ 1352.23</u>

<u>(4⁺)</u> <u>1223</u>

2+ 1121.68

0+ 1078.63

 $^{232}_{90}{\rm Th}_{142}$