²³¹Np ε decay (48.8 min) 1973We08

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, Jagdish K. Tuli, and Edgardo Browne	NDS 185, 560 (2022)	31-Aug-2022

Parent: ²³¹Np: E=0; J^{π}=(5/2⁻); T_{1/2}=48.8 min 2; Q(ε)=1820 50; % ε +% β ⁺ decay≈98.0

²³¹Np-J^{π},T_{1/2}: From ²³¹Np Adopted Levels.

²³¹Np-Q(ε): From 2021Wa16.

²³¹Np- $\%\varepsilon$ + $\%\beta^+$ decay: $\%\alpha\approx 2$ and $\%\varepsilon$ + $\%\beta^+\approx 98$ from ²³¹Np Adopted Levels.

1973We08: ²³¹Np produced in ²³³U(d,p3n),E=28 MeV at the Karlsruhe Isochronous Cyclotron, followed by chemical separation. Measured E γ , I γ using a Ge(Li) detector. Also deduced I(β^+)/I(ε)<0.001 from limit on γ^{\pm} .

Evaluator's note: the decay scheme is incomplete, with no spectral information about the multipolarities and mixing ratios of γ transitions, including that for a low energy 45.1-keV transition.

²³¹U Levels

 $9/2^{-}$ member of configuration=v5/2[752] (1973We08) is expected at 102 keV from rotational energy formula.

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	Comments
0.0	$(5/2^{-})$	4.2 d <i>1</i>	Configuration=v5/2[752] (1973We08).
45.1 <i>3</i>	(7/2 ⁻)		E(level): \approx 42 keV from analogy with the neighboring even-odd nuclei ²³³ U, ²²⁹ Th and ²³¹ Th. J ^{π} : 7/2 member of configuration= $v5/2$ [752] (1973We08).
416.1 <i>3</i>			
421.1 4			
481.7 <i>4</i>			
1153.5 4			
1268.1 4			

[†] From least-squares fit to $E\gamma$ values.

ε, β^+ radiations

E(decay)	E(level)	$I\beta^+$ [†]	Ιε [†]	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
(1.82×10 ³ 5)	0.0	≈0.1	≈90	≈5.9	≈90	E(decay): ≈ 1700 . I β^+ : from measured I(K x ray)/I γ , 1973We08 deduced that at least 90% of ε feeds the ground state, and I(β^+)/I(ε)<0.001 from limit on γ^{\pm} . Other: I(β^+)=0.19% 5 from I(β^+)/I(ε) (theory) from LOGFT code.

[†] Absolute intensity per 100 decays.

 $\gamma(^{231}\text{U})$

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^π	E_f	J_f^{π}	Comments
(45.1 3)		45.1	$(7/2^{-})$	0.0	$(5/2^{-})$	E_{γ} : γ not observed, energy from level-energy difference.
x263.8 3	29 1					
^x 348.4 3	37 2					
370.9 <i>3</i>	100	416.1		45.1	$(7/2^{-})$	
376.3 4	6.5 <i>3</i>	421.1		45.1	$(7/2^{-})$	
416.3 <i>3</i>	2.9 6	416.1		0.0	$(5/2^{-})$	
420.7 4	10.7 11	421.1		0.0	$(5/2^{-})$	
436.9 4	2.9 6	481.7		45.1	$(7/2^{-})$	

Continued on next page (footnotes at end of table)

²³¹Np ε decay (48.8 min) 1973We08 (continued)

$\gamma(^{231}\text{U})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	E_f	J_f^π
481.6 5	6.2 12	481.7		0.0 (5/2 ⁻)	786.6 <i>3</i>	1.9 <i>1</i>	1268.1	481.7	
^x 484.7 5	16.6 32				^x 837.3 4	4.1 6			
^x 715.5 4	2.5 3				851.6 5	7.1 3	1268.1	416.1	
737.8 <i>3</i>	12.6 7	1153.5		416.1	1108.1 <i>3</i>	5.5 5	1153.5	45.1	$(7/2^{-})$

[†] From 1973We08. ^{*x*} γ ray not placed in level scheme.

²³¹Np ε decay (48.8 min) 1973We08

