	History				
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Balraj Singh, Jagdish K. Tuli, and Edgardo Browne	NDS 185, 560 (2022)	31-Aug-2022		

 $Q(\beta^{-})=391.5\ 15;\ S(n)=5118.02\ 20;\ S(p)=7312\ 16;\ Q(\alpha)=4213.4\ 16$ 2021Wa16

S(2n)=11912.3 22, S(2p)=13324 15 (2021Wa16).

2013Fr03 traced the identification of 231 Th to G.N. Antonoff, Phil. Mag. 22, 419 (1911), where decay of natural uranium was studied for α and β radiations, and half-life of 1.5 d (or 36 h) was proposed for a new activity labeled as uranium Y. This reference is not listed in 1931Cu01 or in 1940Li01 (Table of Isotopes). The adopted half-life of 25.57 h 8 here is from measurements by 1958Ca19 and 1951Ja17.

Mass measurement by Schottky mass spectrometry: 2005LiZZ.

A total of 28 s-wave neutron resonances are reported between 1.427 5 keV and 563 keV, with resonance parameters in 2018MuZZ evaluation. See 230 Th(n, γ),(n,n):Resonances dataset for energies and widths.

Additional information 1.

Theoretical calculations: consult the NSR database (www.nndc.bnl.gov/nsr) for 49 primary references, 23 dealing with half-lives of α and cluster decays and other aspects of radioactive decays, and 26 with nuclear structure calculations. These references are listed under 'document' records in this dataset, which can be accessed through on-line ENSDF database at www.nndc.bnl.gov/ensdf/.

²³¹Th Levels

Three high-spin bands, two tentatively assigned to signature partners of the v5/2[633] configuration up to $57/2^+$ for $\alpha = +1/2$ and $51/2^+$ for $\alpha = -1/2$ are given in 232 Th(209 Bi, 210 Bi γ) dataset from 2002AbZV thesis. As firm assignment could not be made in this work, these two bands and a third one with a cascade of eight transitions have not been given in the Adopted dataset.

Cross Reference (XREF) Flags

		A B C D	²³¹ Ac ²³⁵ U a ²³⁰ Th(1 ²³⁰ Th(1	β^- decay (((((((((((((((((((y (7.5 mir (7.04×10 ⁸ th th:primary) y) γ	E F G H	²³⁰ Th(n,γ) E=2 keV:arc ²³⁰ Th(n,γ),(n,n):resonances ²³⁰ Th(d,p) ²³² Th($d,p2n\gamma$)	I J K	232 Th(d,t) 232 Th(3 He, α) 232 Th(209 Bi, 210 Bi γ)
E(level) [†]	Jπ g	T _{1/2}	h	XR	EF			Cor	nments	S
0.0 ^j	5/2+‡	25.57	h 8	ABCD	HI	$\[mm] \beta = \frac{1}{2} \[mm] \beta = $	=100 2×10 coretic. 1958 adiatio 44, 25 42, 25 lividua 25.52 stemat. cay cu indica 8 h. 1 asureco b samp persio uncer certain 3 (195)	¹⁴ is expected as negligible, a al T _{1/2} (β ⁻)>100 s and T _{1/2} (α) Ca19 measured 25.52 h <i>I</i> , wh of 18 different sources, prepa ns of ²³⁰ Th by neutrons, with 5.51, 25.43, 25.51, 25.43, 25.5 5.58, 25.66, 25.45, 25.56 and l data points. Evaluators obta h 2. In addition, there is no c ic uncertainties in the countin rves. Based on a spread of va tor of systematic uncertainty, 951Ja17 (also plutonium proj 1 T _{1/2} =25.64 h <i>10</i> , from an av ples counted using a G.M. con n in data, with no discussion tainty of 0.10 h seems to enco ties. Evaluators adopt T _{1/2} =2 8Ca19) and 25.64 h <i>10</i> (1951, 06); 25.0 h 5 (1973Ch24); 25	as dedu $=4.9\times$ ere un red an i indivis 52, 25.51, in an u liscussi g procu- lues in evalua ect rep verage unter, v of the ompass 5.57 h Ja17). .7 h 2	ticed by evaluators from 10^{17} s (2019Mo01). weighted average was taken in β d purified in five different idual values (in h) being: 25.57, 56, 25.47, 25.58, 25.51, 25.59, without uncertainties on unweighted average of 25.517 h <i>16</i> ion in 1958Ca19 about the edure and least-squares fits of a 1958Ca19, which may serve as itors estimate a total uncertainty of port ANL-4176, p23 (1948)) of 25.56 h 6 and 25.73 h 6 for where the uncertainties were from systematic uncertainties, however s both the statistical and systematic 8 from weighted average of 25.52 Other measurements: 25.76 h <i>21</i> (1971Ko48); 25.2 h, 25.8 h

_

Adopted Levels, Gammas (continued)

²³¹Th Levels (continued)

E(level) [†]	Jπ <i>g</i>	$T_{1/2}^{h}$	XR	REF	Comments
					(1963Na06); 24.3 h 20 (1956Ph61); 25.51 h 23 (1949Kn09, also 25.5 h in AECD-1880 report (1948)); 24.5 h (Y. Nishina et al., Nature 142, 874 (1938)); 24.0 h (1932Gr01). In 1931Cu01 evaluation, $T_{1/2}$ =24.6 h, without citation of a reference for a measurement of this value in their Table I. Weighted average of all the measurements listed with uncertainties is 25.58 h 8, with revised uncertainty of 0.08 h in 1958Ca19. J ^{π} : L(d,t)=2; log <i>ft</i> values to 84.2, 5/2 ⁺ ; 101.4, 7/2 ⁺ ; and 320, 3/2 ⁻ levels in ²³¹ Pa require 5/2; 247.6 E2 γ from 247.5, 1/2 ⁺ level.
41.9521 ^J 16	7/2+‡		ABCD	HIJ	J^{π} : L(d,t)=4; 41.96 γ M1+E2 to 5/2 ⁺ .
96.129 ^J 3	9/2 ^{+‡}		BCD	GHIJ	J^{π} : L(d,t)=4; band member.
162.11 ^J 3	11/2+‡		В	GHIJ	J^{π} : L(d,t)=6; band member. J^{π} : L=6 in (³ He, α).
185.7160 ^k 13	5/2 ^{-#}	1.07 ns 8	ABCD	GΙ	J ^{π} : 144 γ E1 to 7/2 ⁺ , 185.7 γ E1 to 5/2 ⁺ ; rotational band structure. T _{1/2} : other: 0.77 ns <i>12</i> from ²³⁵ U α decay.
205.3101 ^k 15	$(7/2^{-})^{\#}$		ABCD	GΙ	J^{π} : 163 γ (E1) to 7/2 ⁺ , 205 γ (E1) to 5/2 ⁺ ; Rotational band structure.
221.3966 ¹ 20	3/2+@	<74 ps	ABCDE	GHI	XREF: G(225). J ^{π} : M1 γ ray from 1/2 ⁺ in neutron avg. res. capture; band member from 'Fingerprint' method in (d,t) (2008Bu14).
≈225?	$(13/2^+)$			J	
236.899 ^k 7	9/2 ^{-#}		BCD	I	J^{π} : 51 γ to 5/2 ⁻ , 74.8 γ to 11/2 ⁺ ; band member.
240.6? ¹	$(13/2^+)$			Н	
240.8794 ¹ 24	5/2 ⁺ @		ABCD	GHIJ	J ^{π} : L(d,p)=L(d,t)=2; 199 γ M1 to 7/2 ⁺ . (9/2 ⁺) suggested in (³ He, α) with L=3-6 could be for a different level.
247.5867 ^m 20 272.1800 ^m 15	1/2 ⁺ 3/2 ⁺	<74 ps	A CDE A CDE	G I G I	$\begin{split} J^{\pi}: \ L(d,p) = & L(d,t) = 0. \\ XREF: \ G(271). \\ J^{\pi}: \ L(d,p) = & L(d,t) = 2; \ M1 \ \gamma \ ray \ from \ 1/2^+ \ in \ neutron \ avg. \ res. \\ capture; \ 272\gamma \ M1 + E2 \ to \ 5/2^+. \end{split}$
275.4250 ¹ 25	7/2+		BCD	Hi	J ^{π} : 179 γ M1(+E2) to 9/2 ⁺ , 275 γ M1 to 5/2 ⁺ ; L(d,t)=(4+5).
277.60 ^k 6	(11/2 ⁻) [#]		В	GiJ	XREF: J(284). J ^{π} : 41 γ to 9/2 ⁻ , 73 γ to 7/2 ⁻ , 115 γ to 11/2 ⁺ ; L(d,t)=(4+5); band
301.7429 ^{\$} 19	5/2+ <i>a</i>		BCD	GΙ	member. XREF: B(?). J^{π} : 301.7 γ M1 to 5/2 ⁺ , 259.8 γ M1+E2 to 7/2 ⁺ ; L(d,t)=(2); band member.
317.0809 ^m 22	5/2 ⁺ <i>d</i>		BCD	GΙ	J ^{π} : L(d,t)=2; 275 γ M1+E2 to 7/2 ⁺ , 317 γ M1 to 5/2 ⁺ ; band member.
324.913 ¹ 7	(9/2)+@		BCD	GHIJ	XREF: J(326). J ^{π} : L(d,p)=L(d,t)=4; 229 γ M1 to 9/2 ⁺ ; band member. (11/2 ⁺) suggested in (³ He, α).
330.6? ^j	$(15/2^+)^{\ddagger}$			Н	
333 ^k 3	$(13/2^{-})^{\#}$		В	GΙ	J^{π} : band member.
348.3 5	(1/2+,3/2+)		CDE		XREF: E(?). J^{π} : possible M1 γ from 1/2 ⁺ resonance state.
351.511 ^m 6	7/2 ^{+a}		BCD	GΙ	XREF: B(355). J^{π} : 255 γ M1 to 9/2 ⁺ , 351 γ M1 to 5/2 ⁺ .
377.573 ^{\$} 9	$(7/2)^{+d}$		BCD	GΙ	J^{π} : 281 γ M1 to 9/2 ⁺ ; band member.
380.0 <i>3</i>	$1/2^+, 3/2^+$		CD		J ^{π} : M1 γ from 1/2 ⁺ resonance state.

²³¹Th Levels (continued)

E(level) [†]	$J^{\pi g}$	T _{1/2} ^{<i>h</i>}	XF	REF	Comments
385.68? 4	(5/2 ⁺ to 11/2 ⁺) [@]		В		E(level): 2008Bu14, in their (d,t) work, see a very weak peak near 385 keV but assign to a possible contaminant. The authors question the existence of this level from very weak γ rays in α decay. In ²³⁵ U α decay, work in 2017Le03 reported intensity of the 343.5 γ and 2018Ma03 reported the intensity of 289.5 γ . No experiment has reported the placement of these γ rays from coincidence data. J ^π : 290 γ to 9/2 ⁺ , 343 γ to 7/2 ⁺ . 2008Bu14, in (d,t) work, discussed that this level cannot be the 11/2 ⁺ member of 3/2[631] band, based on comparison of measured and calculated cross sections. In the (d,t) work of 1972Gr19, 11/2, 3/2[631] assignment appears incorrect, in view of analysis by 2008Bu14.
386.5? 5	$(1/2^+, 3/2^+)$		E		J ^{π} : possible M1 γ from 1/2 ⁺ resonance state.
387.828 ^{<i>q</i>} 3	7/2 ^{-c}		BCD		J ^{π} : Favored α decay (HF=2.0) from ²³⁵ U 7/2 ⁻ [743].
402.0 ^{<i>k</i>} 3	$(15/2)^{-#}$			G IJ	J^{π} : L(d,p)=L(d,t)=7; band member.
432.7? ⁴	$(17/2^+)$			Н	
447.4 ⁸ 7	$(9/2)^{+a}$			GΙ	XREF: $G(449)$.
452.192 9 18	9/2 ^{-c}		В		J [*] : $L(d,p)=4$; band member. J ^{π} : Favored α decay HF=3.7. 215 γ to 9/2 ⁻ , 266 γ to 5/2 ⁻ , 356 γ to 9/2 ⁺ .
466.5 <i>3</i> 478? <i>6</i>	$(1/2^-, 3/2^-)$			G I J	L(d,t)=(1).
490 ^{<i>m</i>} 3	$(11/2^+)^a$			G	J ^{π} : band member. E(level): ≈487 keV, (d,t) (1970Bo31).
501.2 5			CD		
510.897?' <i>11</i>	$(7/2)^+$		CD		J^{π} : 469 γ M1(+E2) to 7/2 ⁺ ; possible band member.
530° 3	$(11/2^{+})^{a}$			gı	XREF: $1(533.9)$. $I^{\pi} \cdot I_{r}(d t) = (6,7)$; hand member
530.23 ^q 5	(11/2 ⁻) ^C		В	g i	J : L(d,t) = (0,7), band member. XREF: i(533.9). $I^{\pi}: L(d,t) = (6,7)$; band member
536.7 7			CD		$\mathbf{J} = \mathbf{L}(\mathbf{u}, t) - (0, t),$ build memorie
544.9? <i>j</i>	$(19/2^+)^{\ddagger}$			Н	
554.6503 ⁿ 16	$(1/2)^{-b}$	503 ps 12	A CDE	GΙ	J ^{π} : L(d,p)=L(d,t)=1; E1 γ from 1/2 ⁺ neutron avg. res. capture; band member.
568 <i>3</i>			В	G	XREF: B(?).
579' 1	$(9/2^+)$			GIJ	J^{π} : L(d,p)=4; L(d,t)=(4).
590.8396' 24	3/2-0		CDE	g 1	 J^λ: L(d,t)=1; E1 γ ray from 1/2⁺ in neutron avg. res. capture; 405γ E2+M1 to 5/2⁻; band member. Note that (d,t) strength is not consistent with 3/2[761] configuration assignment.
593.6173 ⁿ 20	$(3/2)^{-b}$	0.10 ns 4	A CDE	g i	XREF: E(595.2)i(594.8).
					$T_{1/2}$: from $\beta\gamma\gamma(t)$ in ²³¹ Ac decay (1999Aa03). J ^{π} : L(d,t)=3+1; E1 γ ray from 1/2 ⁺ in neutron avg. res. capture; band member.
595.9738 ⁿ 21	5/2 ^{-b}		CD	i	XREF: i(594.8). J^{π} : L(d,t)=3+1; 244 γ E1 to 7/2 ⁺ , 324 γ (E1) to 3/2 ⁺ ; band member.
619.638 ^v 4	3/2-		CDE	gΙ	J ^{π} : L(d,t)=1; E1 γ ray from 1/2 ⁺ in neutron avg. res. capture; 434 γ (M1) to 5/2 ⁻ .
623.935? ^w 18	(5/2 ⁻)		CD	g	J^{π} : 438 γ E0(+M1) to 5/2 ⁻ .
629.3428 ^t 22	(5/2) ^{-e}		CD	I	J^{π} : 444 γ M1(+E2) to 5/2 ⁻ , 424 γ M1+E2 to (7/2 ⁻); L(d,t)=(3); band member.

²³¹Th Levels (continued)

E(level) [†]	J ^π g	XREF	1	Comments		
634.046? ^w 13	(7/2 ⁻)	BCD		J^{π} : 429 γ M1+E0(+E2) to (7/2 ⁻).		
646.6 4	$(5/2^-, 7/2^-)$		I	J^{π} : L(d,t)=3.		
655.939? ¹ 15	$(7/2^{-})$	CD G	IJ	J^{π} : 419 γ (M1) to 9/2 ⁻ , 470 γ M1 to 5/2 ⁻ . Possible 7/2 member of 3/2 ⁻ [761]		
684.4908 ⁰ 24	$(5/2)^{-}$	CD G	I	J^{π} : 479 γ (E2) to (7/2 ⁻), 499 γ M1 to 5/2 ⁻ ; L(d,t)=1(+3); possible bandhead.		
687.631 ^{<i>u</i>} 3	1/2+	CDE		XREF: E(685.6).		
				J^{π} : 440 γ E0+M1 to 1/2 ⁺ .		
693 50 18		CD		J^{-1} : E0 to $1/2^{-1}$.		
704 ^{<i>q</i>} 2	$(15/2^{-})^{c}$	G		J^{π} : band member.		
709.099 ^u 4	3/2+	CD	I	J^{π} : L(d,t)=2; 437 γ M1+E0(+E2) to 3/2 ⁺ .		
713.755 ^y 3	3/2 ⁻	CDE	i	XREF: i(718.0).		
720 202 ^V ($(\pi/2) = f$			J^{*} : L(d,t)=1+3; E1 from 1/2 ⁺ in neutron avg. res. capture; 528 γ M1 to 5/2 ⁻ .		
$720.302^{\circ} 6$ 735.263 ^{μ} 7	$(1/2)^{-J}$ $(5/2)^{+}$	CD G	1	J^{*} : L(d,t)=1+3; 534 γ M1 to 5/2 ⁻ , 515 γ M1+E2 to (7/2 ⁻); band member. I^{π} : 463 γ M1+E2 to 3/2 ⁺ 488 γ (E2) to 1/2 ⁺		
750.0 3	$(5/2^{-},7/2^{-})$	G	IJ	J^{π} : L(d,t)=3, (15/2 ⁻) suggested in (³ He, α).		
769.9 6	$(11/2^+, 13/2^+)$	Ĩ	I	J^{π} : L(d,t)=(6).		
793.027 ^x 4	$1/2^{+}$ &	CDE	I	XREF: E(794.2).		
802 3		6		J^{π} : 545 γ E0(+M1) to 1/2 ⁺ .		
802 3 808 508 X 8	2/2+&	G	-	π_{-} 52(E0. M1(E2) + 2/2 ⁺		
812.3 2	$(5/2)^{-}$	G	IJ	$F(1) = \frac{1}{2} + \frac{1}{2}$		
				J^{π} : L(d,t)=3(+1) with possible configuration= $v5/2[503]$ (2008Bu14). 15/2 suggested as member of 1/2[770] band in 1987Wh01, deduced from energies of other members of this band is not supported by $\sigma(\theta)$ distribution in (d,t) and $\sigma(^{3}\text{He},\alpha)/\sigma(d,t)$ ratio which is consistent with L=3 rather than L=7 required by J=[15/2] (2008Bu14).		
820.552 ^{<i>u</i>} 7	$1/2^{+}$	CD		J^{π} : 573 γ M1+E0 to 1/2 ⁺ .		
833.169 ^y 4	$(1/2)^{-f}$	CDE	I	XREF: E(834.5).		
820 2024 0	2/2+	CDF C		J^{π} : 239 γ M1 to (3/2) ⁻ ; band member.		
839.303** 9	3/2	CDE G		J^{π} : 567 γ M1+E0 to 3/2 ⁺ .		
841.42 5	1/2-,3/2-		I	$J^{\pi}: L(d,t)=1.$		
846.4 <i>4</i>	$(1/2^+, 3/2^+)$	CDE		XREF: $E(?)$.		
854.5 4	$(7/2^+, 9/2, 11/2^-)$		т	J^{-1} : possible M1 γ from 1/2 resonance state. J^{π} : L(d t)=4.5.		
867.00 4	5/2-,7/2-	CD G	-	J^{π} : 681 γ (M1+E2) to 5/2 ⁻ , 630 γ E2 to 9/2 ⁻ , 479 γ (E2) to 7/2 ⁻ .		
869.7 11	1/2+	E	Ι	XREF: E(869.9).		
871.3	$(7/2)^+$		1	$J^{\prime\prime}: L(d,t)=0.$ $I^{\prime\prime}: L(d^{\prime})=0.$		
875.549 <i>P</i> 4	$(1/2)^{-}$	CDE	I	J^{π} : L(d,t)=1; 321 γ M1+E2 to (1/2) ⁻ .		
889.997 ^u 12	5/2+	CD G	I	XREF: G(881).		
				J^{π} : L(d,t)=2; 614 γ M1 to 7/2 ⁺ , 649 γ (M1) to 5/2 ⁺ , 669 γ E2+M1 to 3/2 ⁺ .		
893 2		G		I_{1} I_{2} I_{2} I_{2} I_{2} I_{2} I_{2} I_{3} I_{3		
899.2 6		CD		5 . 1/2 suggested in (0,p).		
914.90 ^p 4	(5/2)-	CD	IJ	J^{π} : L(d,t)=3; 729 γ (M1(+E2)) to 5/2 ⁻ . Possible 5/2 ⁻ member of 3/2[501]		
930.6.5	$(3/2^+ 5/2^+)$		т	rotational band. $I^{\pi} \cdot I (d t) = (2)$		
936.307 10	$(5/2)^{-}$	CD	-	J^{π} : 548 γ M1+E2 to 7/2 ⁻ , 343 γ (M1) to (3/2) ⁻ .		
942.2 9	<u>\-</u> <i>I</i> = <i>J</i>	CD G	$I \qquad \text{XREF: } G(947)I(944.2).$			
960.809 ^z 12	3/2+	CD	I	XREF: I(958.0).		
				$J'': 739\gamma M1+E0 \text{ to } 3/2'$.		

²³¹Th Levels (continued)

E(level) [†]	$J^{\pi g}$	XREF	Comments
966.0 ^x 6	3/2+,5/2+&	G IJ	J^{π} : L(d,t)=2. 9/2 ⁺ suggested in (d,p). (11/2 ⁺) proposed in (³ He, α). There could be two other different levels near this energy if the results of (d,p) and (³ He, α) prove to be valid
974.4 7 981 <i>3</i>		I G	to be valid.
990.5 7 1004.232 <i>21</i>	3/2+	I CDE G I	XREF: I(1003.0). J^{π} : E1,M1 from 1/2 ⁺ in neutron avg. res. capture; 763 γ M1 to 5/2 ⁺ ; L(d,t)=(1+2).
1011.5 9 1020.730 6	3/2-	g I CDE g I	XREF: g(1016). XREF: g(1016)I(1021.7). I^{π} : L(d t)=1: 4272 M1 to $(3/2)^{-}$ 7732 to $1/2^{+}$
1033.0 <i>3</i> 1056.27 <i>3</i>	1/2 ⁺ (3/2 ⁺)	CD I CD GI	J^{π} : L(d,t)=0. XREF: I(1053).
1066.191 <i>23</i> 1074.346 <i>17</i>	$(5/2,7/2)^+$ $(3/2)^-$	CD G CDE T	J^{π} : 835 γ (M1) to 3/2 ⁺ , 1014 γ (E2) to 7/2 ⁺ . J^{π} : 749 γ (M1) to 5/2 ⁺ , 688 γ E2+M1 to (7/2) ⁺ . XREF: E(1075 1)I(1076 5).
107 1.0 10 17	(3/2)		J^{π} : E1,M1 from 1/2 ⁺ in neutron avg. res. capture; 483 γ M1+E2 to 3/2 ⁻ , 757 γ to 5/2 ⁺ .
1081.331 <i>15</i> 1081.6 <i>6</i> 1086.811 <i>10</i>	1/2 ⁻ ,3/2 ⁻ 3/2 ⁺ ,5/2 ⁺ 5/2 ⁺	CDE G I CD G I	J^{π} : 490 γ M1 to 3/2 ⁻ , 527 γ M1 to (1/2) ⁻ . E(level), J^{π} : L(d,t)=2 suggests a level separate from 1081.3 with negative parity. XREF: I(1091.8). J^{π} : 700 γ F2+M1 to (7/2) ⁺ , 493 γ (F1) to (3/2) ⁻ . L(d,t)=(2) for 1091.8
1094.25 <i>24</i> 1102.252 <i>8</i>	1/2 ⁻ ,3/2 ⁻ 3/2 ⁻	CD CDE G I	J^{π} : E1 primary γ from 1/2 ⁺ . XREF: E(1103.3)I(1103.0). J^{π} : L(d,t)=1; E1 from 1/2 ⁺ in neutron avg. res. capture; 418 γ M1 to (5/2) ⁻ .
1106 6 1115.4 6	(7/2+,9/2+)	J G I	$L(^{3}\text{He},\alpha)=(4).$
1126.0 <i>6</i> 1133.80 <i>8</i> 1155 5 <i>4</i>	$3/2^+, 5/2^+$ $(1/2^+, 3/2^+)$	I CDE CD I	J^{π} : L(d,t)=2. J^{π} : (M1) from 1/2 ⁺ in neutron avg. res. capture;
1159.751 8 1172.990 <i>24</i>	(3/2) ⁻ 3/2 ⁻	CDE G I CDE G I	J^{π} : E1 from 1/2 ⁺ in neutron avg. res. capture; 919 γ (E1) to 5/2 ⁺ . XREF: I(1171.2). J^{π} : L(d,t)=1; E1,M1 from 1/2 ⁺ in neutron avg. res. capture; 459 γ M1 to 3/2 ⁻ , 544 γ (M1) to (52) ⁻
1181.2 6 1187.0 7 1193 2 8	1/2-,3/2-	I IJ	J^{π} : L(d,t)=1. XREF: J(?).
1200.47 <i>17</i> 1213.86 22	1/2-,3/2-	CDE G I CD G	J^{π} : L(d,t)=1.
1219.05 25	$(1/2^+, 3/2^+)$	CDE I	XREF: E(1219.1)I(1220.2). J^{π} : From (n, γ), E=2 keV:ARC.
1222 3	$(1/2^+, 3/2^+)$	EG	AREF: E(1222.0). J ^π : From (n,γ), E=2 keV:avg.
1251.46 <i>18</i> 1262 <i>3</i>	1/2- 2/2-	CD I	
1271.1 6 1273 <i>1</i> 1274.5 <i>4</i>	1/2, 3/2 $3/2^+, 5/2^+$ $1/2^-, 3/2^-$	E I CD	J [*] : From (n,γ) , E=2 keV:avg. J ^{π} : L(d,t)=2. J ^{π} : E1 primary γ from 1/2 ⁺ .
1282 <i>3</i> 1292 <i>2</i> 1300 <i>2</i> 1323 <i>2</i>	-/- ,~/~	G I I T	
1327 2 1339 2 1345.7 11		G IJ G I	XREF: J(1332).

²³¹Th Levels (continued)

E(level) [†]	$J^{\pi g}$	XREF	Comments
1352.8 11	$1/2^{-}, 3/2^{-}$	GI	J^{π} : L(d,t)=1.
1366 4		G	
1372 2		GΙ	
1393 <i>1</i>	$1/2^{-}, 3/2^{-}$	GΙ	J^{π} : L(d,t)=1.
1405.6 10	$1/2^{-}, 3/2^{-}$	GΙ	J^{π} : L(d,t)=1.
1414 5		G	
1430.6 11		I	
1437.2 10	$3/2^+, 5/2^+$	I	J^{π} : L(d,t)=2.
1452 1		I	
1458 2		I	
1464 <i>1</i>	$(1/2^-, 3/2^-)$	Ij	E(level): possible doublet. J^{π} : L(d,t)=1,(2).
1476 2		Ij	
1487.4 11	$1/2^{-}, 3/2^{-}$	I	J^{π} : L(d,t)=1.
1494.3 11		I	
1523 2		I	
1533 2		I	
1542 2		I	
1572 <i>I</i>	$(5/2^{-},7/2^{-})$	IJ	J^{π} : L(d,t)=(3). L(³ He, α) \geq 3.
1585 <i>1</i>	1/2-,3/2-	I	J^{π} : L(d,t)=1.
1601 <i>1</i>	$1/2^{-}, 3/2^{-}$	I	J^{π} : L(d,t)=1.
1608 1	1 / 1	I	
1619.5 10	$1/2^{-}, 3/2^{-}$	I	J^{π} : L(d,t)=1.
1627 2	1 / 1	I	
1648 <i>1</i>		I	
1654 <i>1</i>		I	
1666 2		I	
1678.2		T1	I^{π} : (15/2 ⁻) suggested in (³ He α).
1696 7		T	
1708 /	$1/2^{-}.3/2^{-}$	Ť	$I^{\pi}: L(d t) = 1$
1714 /	1/2 ,0/2	Ť	
(5118.15.3)	$1/2^{+}$	CD -	E(level); S(n) = 5118.02 keV 20 (2021 Wal6).
(5119.84 11)	$1/2^+$	E	E(level); $S(n)+E(n)$, $S(n)=5118.02 keV 20 (2021Wa16)$, $E(n)=2 keV$.
(, -	_	I^{π} : s-wave n-capture in 0 ⁺ g s of ²³⁰ Th
			5. 5 march cupture in 0 5.5. 01 111.

[†] From least-squares fit to $E\gamma$ data, when levels are populated in any of the four γ -ray studies. The gamma-ray energy uncertainty is assumed as 0.5 keV when not stated. Reduced χ^2 of 2.07 is somewhat larger than critical χ^2 =1.25 at 95% confidence level, with only three low energy and four high-energy primary γ rays in (n,γ) poorly fitted.

[‡] Member of K=5/2 rotational band. Energies calculated using α =6.8 keV and including Coriolis mixing. Band structure: 0⁻ (5/2⁺), 42⁻ (7/2⁺), 96⁻ (9/2⁺), 162 keV (11/2⁺) (1987Wh01).

[#] Member of K=5/2 rotational band. Energies calculated using α =6.7 keV and including Coriolis mixing. Band structure: 185.1-(5/2⁻), 205.5-(7/2⁻), 237.2-(9/2⁻), 280.4-(11/2⁻), 331.6-(13/2⁻), 403.9 keV (15/2⁻) (1987Wh01).

^(a) Member of K=3/2 rotational band. Energies calculated using α =6.8 keV and including Coriolis mixing. Band structure: 220.7-(3/2⁺), 241.7-(5/2⁺), 276.9-(7/2⁺), 323.2-(9/2⁺), and 385.8 keV (11/2⁺) (1987Wh01).

[&] Member of K=1/2 rotational band. Energies calculated using α =6.8 keV, a=+0.16, and including Coriolis mixing. Band structure: 792.3- (1/2⁺), 808.7- (3/2⁺), 853.0- (5/2⁺), 891.6- (7/2⁺), 970.9- (9/2⁺), 1032.0 keV (11/2⁺) (1987Wh01).

^{*a*} Member of K=1/2 rotational band. Energies calculated using α =6.8 keV, a=-0.39, and including Coriolis mixing. Band structure: 247.7- (1/2⁺), 271.5- (3/2⁺), 302.0- (5/2⁺), 352.7- (7/2⁺), 409.5- (9/2⁺), 489.3 keV (11/2⁺) (1987Wh01).

^b Member of K=1/2 rotational band. Energies calculated using α =6.7 keV, a=+0.93, and including Coriolis mixing. Band structure: 554- (1/2⁻), 594- (3/2⁻), and 596 keV (5/2⁻) (1987Wh01).

^c Member of K=7/2 rotational band. Energies calculated using α =6.7 keV, and including Coriolis mixing. Band structure: 388.6-

²³¹Th Levels (continued)

(7/2⁻), 452.9- (9/2⁻), 527.2- (11/2⁻), 598.9- (13/2⁻), and 705.4 keV (15/2⁻) (1987Wh01).

- ^d Member of K=5/2 rotational band. Energies calculated using α =6.8 keV and including Coriolis mixing. Band structure: 317.8-(5/2⁺), 376.0-(7/2⁺), 447.9-(9/2⁺), 531.5 keV (1987Wh01).
- ^{*e*} Member of K=3/2 rotational band. Energies calculated using α =6.7 keV and including Coriolis mixing. Band structure: 588.6-(3/2⁻), 629.3-(5/2⁻), and 658.5 keV (7/2⁻) (1987Wh01).
- ^{*f*} Member of K=1/2 rotational band. Energies calculated using α =6.8 keV, a=-7.3, and including Coriolis mixing. Band structure: 833.5- (1/2⁻), 711.6- (3/2⁻), 984.2- (5/2⁻), 723.0- (7/2⁻), and 812.2 keV (15/2⁻) (1987Wh01).
- ^{*g*} From γ -ray deexcitation in (n,γ) E=thermal. Levels populated by capture γ rays in ²³⁰Th (n,γ) E=2 keV:ARC have J=1/2, 3/2, based on the multipolarity of the capture γ ray. Additional arguments are given with individual levels. See detailed arguments for J^{π} assignments in 1987Wh01. In (d,t), "fingerprint" method (comparison of experimental spectroscopic strengths or cross sections of members of a rotational band with those predicted by perturbed (and unperturbed) Coriolis calculations) has been used by 2008Bu14 to assign J^{π} for levels which form members of a band based on a Nilsson configuration.
- ^h For excited states, values are from $\beta\gamma\gamma$ (t) in ²³¹Ac decay (1999Aa03).
- ^{*i*} Band(A): $v5/2[633], \alpha = +1/2$. The $13/2^+$ and $17/2^+$ members are tentatively included from 1993AcZZ in ²³²Th(d,p2n\gamma).
- ^j Band(a): $v5/2[633], \alpha = -1/2$. The $15/2^+$ and $19/2^+$ members are tentatively included from 1993AcZZ in ²³²Th(d,p2n\gamma).
- ^k Band(B): v5/2[752].
- ^{*l*} Band(C): *v*3/2[631].
- ^m Band(D): v1/2[631].
- ^{*n*} Band(E): v1/2[501].
- ^o Band(F): v5/2[503].
- p Band(G): v3/2[501].
- q Band(H): v7/2[743].
- r Band(I): v7/2[624].
- ^s Band(J): v5/2[622].
- t Band(K): v3/2[761].
- ^{*u*} Band(L): $v1/2[631] \otimes 0^+ + v5/2[633] \otimes 2^+$.
- ^{*v*} Band(M): *v*3/2[631]⊗0[−].
- ^w Band(N): $v5/2[752] \otimes 0^+ + v3/2[631] \otimes 0^-$.
- ^x Band(O): $v1/2[640] + v1/2[631] \otimes 0^+$.
- ^y Band(P): v1/2[770].
- ^{*z*} Band(Q): *v*3/2[631]⊗0⁺.

Adopted Levels, Gammas (continued)													
						<u>γ(</u>	²³¹ Th)						
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. ^b	$\delta^{\boldsymbol{b}}$	α^{d}	Comments				
41.9521	7/2+	41.98 5	100	0.0	5/2+	M1+E2	0.95 10	$3.7 \times 10^2 4$					
96.129	9/2+	54.25 5	13 4	41.9521	7/2+	M1+E2	0.85 25	100 29					
162 11	11/2+	96.09 2	100 6	0.0	5/2+ 7/2+	[E2]		13.6 2	E				
102.11	11/2	120.55 5	100	41.9321	1/2	[E2]		5.04 7	E_{γ} . somewhat poor nt. Lever-energy difference=120.15				
									E_{γ} : from α decay, based on least squares fit $E_{\gamma}=119.989$ 2.				
185.7160	$5/2^{-}$	143.765 2	19.11 <i>14</i>	41.9521	$7/2^{+}$	E1		0.207 3	$B(E1)(W.u.) = 8.0 \times 10^{-6} + 7 - 6$				
		185.713 2	100.0 12	0.0	5/2+	E1		0.1124 16	$B(E1)(W.u.) = 1.95 \times 10^{-5} + 16 - 14$				
205.3101	$(7/2^{-})$	19.55 5	22.2.12	185.7160	$5/2^{-}$	[M1]		114.7 19					
		109.176 31	32.2 13	96.129	9/2' 7/2+	[E1] (E1)		0.0932 13					
		205 311 2	99.2.10	41.9521	$5/2^+$	(E1) (E1)		0.1323 22					
221.3966	$3/2^{+}$	221.392 20	100.0	0.0	$5/2^+$	M1		1.96 3	$\alpha(K)=1.566\ 22;\ \alpha(L)=0.296\ 5;\ \alpha(M)=0.0712\ 10$				
									$\alpha(N)=0.0190 3; \alpha(O)=0.00450 7; \alpha(P)=0.000873 13;$				
									$\alpha(Q) = 8.28 \times 10^{-5} \ 12$				
226 000	0/2-	21.60.5	7.0.07	205 2101	(7/2-)	0.01		110 7 16	B(M1)(W.u.)>0.0092				
236.899	9/2	31.60 5	1.2 2/	205.3101	(1/2)	[M1] [F2]		110.7 10					
		74.94 4	11.5 21	162.11	$\frac{3}{2}$ 11/2 ⁺	[E2] [E1]		0.2524	E _w : somewhat poor fit. Level-energy difference=74.79				
		,, .	1110 21	102111		[21]		01202	<i>3</i> .				
		140.759 20	33.2 23	96.129	9/2+	[E1]		0.218 3					
240.60	(10/0+)	194.942 7	100.0 21	41.9521	$7/2^+$	[E1]		0.100 2					
240.6?	$(13/2^+)$ 5/2 ⁺	144.5 3	100	96.129 41.0521	9/2' 7/2+	M1		261 1					
240.0794	5/2	240 876 4	100 6	41.9521	7/2 5/2+	M1(+F2)	033	2.04 4					
247 5867	$1/2^{+}$	$(26.2^{@})$	<53@	221 3966	$3/2^+$	[M1]	0.5 5	192.4					
217.5007	1/2	247586°	100 & 18	0.0	5/2+	F2		0 312 5	$B(F2)(W_{11}) > 58$				
272 1800	3/2+	$(24.6^{@})$	$22^{@}13$	247 5867	$1/2^+$	[M1]		231.5	B(B2)(11.0.)> 50				
272.1000	5/2	(21.3°)	<7.5 [@]	240 8794	5/2+	(M1)		114 2					
		(51.5°)	$\leq 10.4^{\circ}$	270.0774	3/2+	(M11)		27.3.5					
		(30.8)	≤ 10.4	41 0521	5/2 7/2+	[[11]]		0 300 6					
		230.245 11 272 181 & 2	100° 15	41.9521	7/2 5/2+	[E2] M1 \pm E2	0.64.10	0.399 0					
275 4250	7/2+	2/2.101 2	100 15	240.9704	5/2 5/2+		0.04 10	0.65 0					
273.4230	1/2	54.75 I 54.17	≈97 <26	240.8794	$\frac{3}{2}^{+}$	[N11] [F2]		85.9 14 210 4					
		179.297 2	40 6	96.129	$9/2^+$	M1(+E2)	0.25 25	3.4 4	I_{γ} : from (n,γ) , not seen in α decay.				
		233.470 <i>3</i>	100 7	41.9521	7/2+	M1		1.688 24					
		275.428 4	25 5	0.0	5/2+	M1(+E2)	0.25 25	1.02 12	I_{γ} : from weighted average of values from α decay and (n,γ) E=th.				
277.60	$(11/2^{-})$	41.1	100 5	236.899	9/2-	[M1]		51.0 7					
			1 () () 7	ave 0101	$(\neg) \circ \neg)$			0 10					

 ∞

	Adopted Levels, Gammas (continued)													
					$\gamma(^{231}$	Th) (continu	ed)							
E _i (level)	J_i^π	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. ^b	$\delta^{\boldsymbol{b}}$	α^{d}	Comments					
277.60	(11/2 ⁻)	115.45 5 182.1 ^f	8.19 9	162.11 96.129	11/2 ⁺ 9/2 ⁺	[E1]		0.348 5	E_{γ} : tentative γ from α decay, probably very weak, from coincidence data (1975Val1).					
301.7429	5/2+	80.347 ^{&} 2 259.790 ^{&} 4 301.741 ^{&} 3	51 ^{&} 8 36 ^{&} 6 100 ^{&} 16	221.3966 41.9521 0.0	3/2+ 7/2+ 5/2+	M1+E2 M1	0.65 10	0.96 7 0.880 <i>13</i>						
317.0809	5/2+	76.198 ^{&} 4 95.7 ^f	$20^{\&} 3$	240.8794 221.3966	$5/2^+$ $3/2^+$	[M1+E2]		24 17						
324.913	(9/2)+	275.129 ^{cc} 2 317.063 <i>12</i> 228.785 6 282.92 5	4.6 9 100 15 65 23	41.9521 0.0 96.129 41.9521	7/2* 5/2+ 9/2+ 7/2+	M1+E2 M1 M1 [M1+E2]	0.6 1	0.84 6 0.723 <i>10</i> 1.79 <i>3</i> 0.60 <i>40</i>	I_{γ} : from (n,γ) E=th. I_{γ} : from (n,γ) E=th.					
330.6? 351.511	(15/2 ⁺) 7/2 ⁺	168.1 <i>3</i> 255.365 ^{&} 10	100 79 ^{&} 16	162.11 96.129	11/2 ⁺ 9/2 ⁺	M1		1.315 <i>19</i>						
377.573	(7/2)+	309.557 <i>×</i> 12 351.512 <i>×</i> 23 136.55 5 173.0 10 281.440.0	$64^{\&} 13$ 100 6 45 20 ~ 25	41.9521 0.0 240.8794 205.3101 96.129	$5/2^+$ $5/2^+$ $(7/2^-)$ $9/2^+$	(E2) M1 [M1+E2] [E1] M1		0.1534 22 0.545 8 5.3 24 0.132 2 1.005 14						
385.68?	(5/2 ⁺ to 11/2 ⁺)	289.56 <i>4</i> 343.5 <i>2</i>	74 <i>14</i> 100 9	96.129 96.129 41.9521	9/2 ⁺ 7/2 ⁺	1411		1.005 14						
387.828	7/2-	147.0 ^{<i>f</i>}	6.0.0	240.8794	5/2+			• • •	E_{γ} : tentative γ from α decay, from coincidence data (1975Val1).					
422 79	(17/2+)	150.937 20 182.504 10 202.110 3 291.65 3 345.92 3 387.84 3 1021 2	6.8 9 38.5 14 100 3 3.4 4 3.2 4 2.59 22	236.899 205.3101 185.7160 96.129 41.9521 0.0 240.62	$9/2^{-}$ (7/2 ⁻) $5/2^{-}$ $9/2^{+}$ $7/2^{+}$ $5/2^{+}$ (12/2 ⁺)	[M1+E2] [M1+E2] [M1+E2]		3.9 <i>1</i> 9 2.1 <i>13</i> 1.6 9						
452.192	9/2-	(64.45 5)	100	387.828	(13/2) 7/2 ⁻	[M1+E2]		52 39	E_{γ} : γ ray is expected, but it has not been observed.					
		215.30 5 246.83 3 266.47 5 291.2 356.03 5 410.29 4	58 4 100 6 12.9 20 4.7 16 4.5 13	236.899 205.3101 185.7160 162.11 96.129 41.9521	9/2 ⁻ (7/2 ⁻) 5/2 ⁻ 11/2 ⁺ 9/2 ⁺ 7/2 ⁺	[M1+E2] [M1] [E2]		1.3 8 1.445 20 0.245 4	00501704.					
510.897? 530.23	(7/2) ⁺ (11/2 ⁻)	468.944 ^{&} <i>f</i> 10 142.40 5	100 ^{&} 100	41.9521 387.828	7/2+ 7/2 ⁻	M1+E2 [E2]	0.7 2	0.18 <i>3</i> 2.48 <i>4</i>						

 $^{231}_{90}{
m Th}_{141}$ -9

From ENSDF

 $^{231}_{90}{
m Th}_{141}-9$

	Adopted Levels, Gammas (continued)												
					$\gamma(^{231}\text{Th})$ (contin	nued)							
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^b	$\delta^{\boldsymbol{b}}$	α^{d}	Comments					
544.9?	$(19/2^+)$	214.3 3	100	330.6? (15/2+)									
554.6503	$(1/2)^{-}$	282.471 [‡] 2	100 [@] 3	272.1800 3/2+	E1		0.0425 6	$B(E1)(W.u.)=6.94\times10^{-6}\ 20$					
		307.063 [‡] 2	78.5 [@] 9	247.5867 1/2+	E1		0.0353 5	B(E1)(W.u.)=4.24×10 ⁻⁶ 12					
		368.934 [‡] 2	39.2 [@] 6	185.7160 5/2-	E2		0.0927 13	B(E2)(W.u.)=0.336 10					
590.8396	3/2-	289.092 ^{&} 10	3.0 ^{&} 6	301.7429 5/2+									
		385.532 ^{&} 3	25 ^{&} 4	205.3101 (7/2-)	(E2)		0.0822 12						
		405.121 ^{&} 3	100 ^{&} 15	185.7160 5/2-	E2+M1	1.4 2	0.173 22						
593.6173	$(3/2)^{-}$	346.1 [@] 2	17 [@] 4	247.5867 1/2+	(E1)		0.0272 4	$B(E1)(W.u.)=4.1\times10^{-6}+28-14$					
		372.221 [‡] 2	43 6	221.3966 3/2+	E1		0.0232 3	B(E1)(W.u.)=8×10 ⁻⁶ +6-3 L : weighted average from (n c) E-th and θ^- decay					
		388 3@ 2	$9.5^{@}.30$	$205 3101 (7/2^{-})$	[F2]		0.0806.11	r_{γ} . weighted average from (ii, γ) L=in and β decay. B(F2)(W ₁₁)=0.40 ±29=16					
		$407\ 899^{\ddagger}\ 2$	$100^{@} 11$	$185,7160,5/2^{-1}$	[<u>1</u> 2] E2		0.0708 10	B(E2)(Wn) = 33 + 22 - 10					
595 9738	5/2-	$244\ 451^{\&}\ 10$	$18^{\&} 4$	$351\ 511\ 7/2^+$	E1		0.0591.8	B(E2)((()) 5.5 (22 10					
575.7750	5/2	323.794 ^{&} 2	$100^{\&}$ 15	$272.1800 \ 3/2^+$	(E1)		0.0314.5						
		374.590 & 9	23& 5	$221.3966 3/2^+$	(E1)		0.0229 3						
		390.662 ^{&} 4	63 ^{&} 12	$205.3101 (7/2^{-})$	M1+E2	1.2 3	0.21 5						
		410.252 ^{&} 10	29 ^{&} 6	185.7160 5/2-	M1		0.358 5						
619.638	3/2-	302.540 ^{&} 7	28 ^{&} 6	317.0809 5/2+	(E1)		0.0365 5						
		317.886 ^{&} 22	7.9 <mark>&</mark> 16	301.7429 5/2+									
		398.242 ^{&} 10	38 ^{&} 8	221.3966 3/2+	(E1)		0.0201 3						
		433.927 ^{&} 4	100 ^{&} 16	185.7160 5/2-	(M1)		0.308 4						
623.935?	$(5/2^{-})$	418.62 ^{e&} 4	<i>e</i> &	205.3101 (7/2 ⁻)									
		438.22 ^{&} 2	&	185.7160 5/2-	E0(+E2+M1)								
629.3428	$(5/2)^{-}$	424.032 ^{&} 4	38 ^{&} 7	205.3101 (7/2-)	M1+E2	0.9 1	0.209 16						
		443.626 ^{&} 2	100 ^{&} 15	185.7160 5/2-	M1(+E2)	0.4 4	0.26 6						
		629.368 ^{&} 15	9.6 ^{&} 15	$0.0 5/2^+$									
634.046?	$(7/2^{-})$	428.71 ^{&} 4	100 ^{&} 22	205.3101 (7/2-)	M1+E0(+E2)								
		448.339 ^{&} 18	87 ^{&} 44	185.7160 5/2-									
655.939?	$(7/2^{-})$	419.031 ^{&} <i>f</i> 16	100 ^{&} 21	236.899 9/2-	(M1)		0.338 5						
		470.25 ^{&} <i>f</i> 3	71 ^{&} 17	185.7160 5/2-	M1		0.248 4						
684.4908	$(5/2)^{-}$	479.19 ^{e&} 5	9.6 ^{e&} 16	205.3101 (7/2 ⁻)	E2+M1	3.0 8	0.066 14						
		498.775 ^{&} 2	100 215	185.7160 5/2-	M1		0.211 3						
687.631	$1/2^{+}$	415.460 ^{&} 8	12.1 & 20	272.1800 3/2+	(M1)		0.346 5						
		440.044 ^{&} 7	18 ^{&} 3	247.5867 1/2+	E0+M1								
		466.227 ^{&} 3	81 ^{&} 12	221.3966 3/2+	M1		0.253 4						

From ENSDF

 $^{231}_{90}$ Th $_{141}$ -10

	Adopted Levels, Gammas (continued)													
						$\gamma(^{231}\text{Th})$ (co	ontinued)						
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^b	$\delta^{\boldsymbol{b}}$	α^{d}	Comments					
687.631	1/2+	687.658 ^{&} 7	100 ^{&} 15	0.0	5/2+	(E2)		0.0210 3	E_{γ} : somewhat poor fit. Level-energy difference=687.630 <i>3</i> .					
709.099	3/2+	392.038 ^{&} 13 436.917 ^{&} 4 468.209 ^{e&} 19	17 ^{&} 4 100 ^{&} 14 26 ^{e&} 6	317.0809 272.1800 240.8794	5/2 ⁺ 3/2 ⁺ 5/2 ⁺	M1+E0(+E2) M1(+E2)		0.15 10						
713.755	3/2-	487.689 ^{e&} 23 325.925 ^{&} 3 441.64 ^{&} 4	$20^{e^{\&}} 4$ $24^{\&} 4$ $50^{\&} 10$	221.3966 387.828 272.1800	3/2 ⁺ 7/2 ⁻ 3/2 ⁺	(E2)		0.0453 6						
720.302	(7/2)-	$528.038^{\&}$ 3 418.62 ^{e&} 4	$100^{\&} 16$ $2.6^{e\&} 4$	185.7160 301.7429	5/2 ⁻ 5/2 ⁺	M1		0.181 3						
		444.892 ^{&} 14 514.991 ^{&} 7 534 562 ^{&} 15	$16^{\&} 4$ $100^{\&} 15$ $15^{\&} 3$	275.4250 205.3101 185.7160	$7/2^+$ (7/2 ⁻) $5/2^-$	(E1) M1+E2 M1	1.0 2	0.01599 <i>23</i> 0.117 <i>17</i> 0.1755 <i>2</i> 5						
735.263	(5/2)+	433.517 ^{&} 8 463.085 ^{&} 12	100 ^{&} 16 75 ^{&} 16	301.7429 272.1800	5/2 ⁺ 3/2 ⁺	(E2) M1+E2	1.2 2	0.1755 25 0.0605 9 0.136 19						
793.027	1/2+	487.689 ^{ccc} 23 491.284 ^{&} 4 520.847 ^{&} 14	42^{2}	247.5867 301.7429 272.1800	1/2+ 5/2+ 3/2+	(E2) (E2) E2+M1	1.5 3	0.0453 6 0.0445 6 0.085 16						
808.508	3/2+	545.420 ^{&} 16 793.04 ^{&} 3 456.990 ^{&} f 11	<7.4 ^{&} 34 ^{&} 7 110 ^{&} 19	247.5867 0.0 351.511	1/2 ⁺ 5/2 ⁺ 7/2 ⁺	E0(+M1) (E2)		0.0531 8	Mult.: E2(+M1) from ce data in 231 Th(n, γ). Level					
		506.74 ^{&} 7 536.336 ^{&} 17 560.875 ^{&} 21	45 ^{&} 10 76 ^{&} 17 58 ^{&} 12	301.7429 272.1800 247.5867	5/2 ⁺ 3/2 ⁺ 1/2 ⁺	E0+M1(+E2)			scheme requires pure E2.					
		587.155 ^{&} 17 766.6 ^{&} 3 808.38 ^{&} 9	81 ^{&} 14 43 ^{&} 11 100 ^{&} 30	221.3966 41.9521 0.0	3/2 ⁺ 7/2 ⁺ 5/2 ⁺	M1		0.1366 19						
820.552	1/2+	503.44 ^{&} 6 572.964 ^{&} 7 599.20 ^{&} 4 820 43 ^{&} 7	$19^{\&} 5$ $100^{\&} 17$ $21^{\&} 5$ $37^{\&} 6$	317.0809 247.5867 221.3966 0.0	5/2 ⁺ 1/2 ⁺ 3/2 ⁺ 5/2 ⁺	M1+E0								
833.169	(1/2)-	239.548 ^{&} 4 278.524 ^{&} 14 585.607 ^{&} 13	$100^{\&} 15$ $7.0^{\&} 15$ $28^{\&} 5$	593.6173 554.6503 247.5867	$(3/2)^{-}$ $(1/2)^{-}$ $1/2^{+}$	M1		1.571 22						

 $^{231}_{90}$ Th $_{141}$ -11

From ENSDF

 $^{231}_{90}\mathrm{Th}_{141}$ -11

					Adopted Levels, Gammas (continued)					
						γ ⁽²³¹ Th) (contin	nued)			
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult. ^b	$\delta^{\boldsymbol{b}}$	α^{d}		
833.169	$(1/2)^{-}$	611.80 ^{&} 2	23 ^{&} 4	221.3966	$3/2^{+}$					
839.303	3/2+	284.659 ^{&} 13	20 ^{&} 4	554.6503	$(1/2)^{-}$					
		522.218 ^{&} 16	64 ^{&} 10	317.0809	$5/2^{+}$	(M1)		0.187 3		
		567.108 ^{&} 19	69 <mark>&</mark> 12	272.1800	$3/2^{+}$	M1+E0				
		617.87 ^{&} 4	34 ^{&} 7	221.3966	$3/2^{+}$	M1+E0				
		797.56 ^{&} 13	45 <mark>&</mark> 10	41.9521	$7/2^{+}$					
		839.36 ^{&} 5	100 <mark>&</mark> 16	0.0	5/2+	(E2)		0.01403 20		
867.00	5/2-,7/2-	479.19 ^{e&} 5	100 ^{e&} 17	387.828	7/2-	(E2)		0.0472 7		
		630.00 ^{&} 6	51 ^{&} 11	236.899	9/2-	E2		0.0253 4		
		681.37 <mark>&</mark> 7	80 <mark>&</mark> 13	185.7160	5/2-	(M1+E2)		0.06 4		
875.549	$(3/2)^{-}$	255.903 ^{&} 11	25 ^{&} 5	619.638	3/2-					
		320.899 <mark>&</mark> 4	83 ^{&} 13	554.6503	$(1/2)^{-}$	M1+E2	0.9 2	0.45 7		
		875.54 ^{&} 7	100 ^{&} 17	0.0	5/2+					
889.997	$5/2^{+}$	614.563 ^{&} 14	100 <mark>&</mark> 16	275.4250	$7/2^+$	M1		0.1209 17		
		649.142 ^{&} 23	77 <mark>&</mark> 12	240.8794	5/2+	(M1)		0.1046 15		
		668.56 ^{&} 10	41 ^{&} 9	221.3966	$3/2^{+}$	E2+M1	1.2 3	0.053 11		
914.90	$(5/2)^{-}$	673.96 ^{&} 13	34 ^{&} 14	240.8794	$5/2^{+}$					
		678.1 ^{&} 3	22 <mark>&</mark> 7	236.899	9/2-					
		729.19 ^{&} 5	55 <mark>&</mark> 9	185.7160	5/2-	(M1(+E2))		0.05 3		
		914.91 7	100 16	0.0	5/2+					
936.307	$(5/2)^{-}$	342.702 ^{&} 17	10.9 ^{&} 22	593.6173	$(3/2)^{-}$	(M1)		0.584 8		
		548.454 ^{&} 15	36 ^{&} 6	387.828	7/2-	E2+M1	1.5 3	0.074 14		
		619.27 ^{&} <i>13</i>	29.6 ^{&} 9	317.0809	5/2+					
		750.621 ^{&} 16	100 ^{&} 18	185.7160	5/2-	M1		0.0711 10		
		936.17 ^{&} 6	100 ^{&} 18	0.0	5/2+					
960.809	3/2+	643.85 ^{&} 7	19 ^{&} 5	317.0809	$5/2^{+}$					
		658.97 ^{&} 6	20 ^{&} 5	301.7429	5/2+	M1+E2	1.0 3	0.062 14		
		688.611 ^{e&} 24	85 <mark>e&</mark> 15	272.1800	3/2+	E2+M1	1.1 2	0.052 7		
		713.234 ^{&} 16	100 ^{&} 15	247.5867	$1/2^{+}$	M1+E2	0.6 1	0.065 5		
		719.74 ^{&} 12	19 ^{&} 5	240.8794	5/2+					
		739.409 ^{&} 25	70 ^{&} 12	221.3966	3/2+	M1+E0(+E2)				
		775.04 ^{&} 13	26 ^{&} 8	185.7160	5/2-					
		918.92 ^{e&} 11	49 ^{e&} 8	41.9521	7/2+	(E2)		0.01175 17		
1004.232	3/2+	626.64 ^{&} 4	34 ^{&} 8	377.573	$(7/2)^+$					
		763.363 ^{&} 24	100 ^{&} 19	240.8794	5/2+	M1		0.0680 10		

 $^{231}_{90}\text{Th}_{141}\text{-}12$

				Adopted Levels, Gammas (continued)				
					<u>)</u>	(^{231}Th) (cc	ontinued)	
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. ^b	$\delta^{\boldsymbol{b}}$	α^{d}
1020.730	3/2-	336.240 ^{&} 10	40 ^{&} 8	684.4908	$(5/2)^{-}$	M1+E2	0.63 25	0.47 8
	,	427.110 ^{&} 7	100 <mark>&</mark> 15	593.6173	$(3/2)^{-}$	M1		0.321 5
		773.18 ^{&} 13	45 ^{&} 11	247.5867	$1/2^{+}$			
		799.38 <mark>&</mark> 5	89 <mark>&</mark> 15	221.3966	3/2+			
		834.92 ^e 5	131 ^e 21	185.7160	$5/2^{-}$	(M1)		0.0537 8
1056.27	$(3/2^+)$	784.05 ^{&} 9	26 ^{&} 5	272.1800	$3/2^{+}$			
		808.74 ^{&} 9	23 ^{&} 4	247.5867	$1/2^{+}$			
		834.92 ^{e&} 5	34 ^{e&} 6	221.3966	$3/2^{+}$	(M1)		0.0537 8
		1014.33 & 4	100 20	41.9521	7/2+	(E2)		
1066.191	$(5/2,7/2)^+$	688.611 ^{e&} 24	100 ^{e&} 18	377.573	$(7/2)^+$	E2+M1	1.1 2	0.052 7
		749.14 ^{&} 5	56 ^{&} 9	317.0809	5/2+	(M1)		0.0715 10
		844.55 ^{&} 18	25 ^{&} 6	221.3966	$3/2^{+}$			
		1024.91 & 25	41 ^{&} 14	41.9521	$7/2^{+}$			
		1066.07 ^{&} 15	45 ^{&} 15	0.0	5/2+			
1074.346	$(3/2)^{-}$	483.507 17	88 29	590.8396	$3/2^{-}$	E2+M1	1.4 3	0.108 21
		757.28 18	71 2 17	317.0809	$5/2^{+}$			
		888.49 29	100 22	185.7160	5/2-			
1081.331	1/2-,3/2-	487.689 ^{e&} 23	100 ^{e&} 21	593.6173	$(3/2)^{-}$	(E2)		0.0453 6
		490.51 2	100 21	590.8396	3/2-	M1		0.221 3
		526.68 ^{&} 5	58 14	554.6503	$(1/2)^{-}$	(M1)		0.183 <i>3</i>
1086.811	$5/2^{+}$	493.177 ^{&} 25	8.9 ^{&} 18	593.6173	$(3/2)^{-}$	(E1)		0.01297 18
		709.220 2 14	100 26	377.573	$(7/2)^+$	E2+M1	0.8 2	0.058 8
		785.08 ^{e&} 8	19 ^{e&} 3	301.7429	5/2+			
		811.408 × 15	68 ^{&} 11	275.4250	$7/2^{+}$	E2		0.01501 21
		814.64 ^{&} 4	26 ^{&} 4	272.1800	$3/2^{+}$	(E2)		0.01489 21
1102.252	3/2-	388.482 ^{&} 9	100 2 11	713.755	3/2-			
		417.793 ^{&} 14	65 ^{&} 15	684.4908	$(5/2)^{-}$	M1		0.341 5
		468.209 ^{ex} 19	89 ^{ex} 19	634.046?	$(7/2^{-})$	[E2]		0.0500 7
		482.62 ^{&} 5	31 8	619.638	3/2-			
		785.08 ^{e&} 8	125 ^{e&} 21	317.0809	$5/2^{+}$			
		861.86 ^{e&} 24	50 ^{e&} 12	240.8794	$5/2^{+}$			
1133.80	$(1/2^+, 3/2^+)$	816.70 ^{& f} 9	119 ^{&} 26	317.0809	5/2+			
		861.86 ^{e&} 24	71 ^{e&} 17	272.1800	$3/2^{+}$			
		886.15 ^{&} 25	100 24	247.5867	$1/2^{+}$			
1159.751	$(3/2)^{-}$	445.996 ^{&} 7	100 ^{&} 15	713.755	3/2-	E2+M1	1.17 20	0.150 21

 $^{231}_{90}{\rm Th}_{141}\text{-}13$

					Adopted	Levels, Gam	mas (co	ntinued)	
					<u>)</u>	$v(^{231}\text{Th})$ (cor	ntinued)		
E _i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	J_f^π	Mult. ^b	$\delta^{\boldsymbol{b}}$	α^{d}	Comments
1159.751	$(3/2)^{-}$	918.92 ^{e&} 11	72 ^{e&} 12	240.8794	5/2+	(E1)		0.00400 6	
	,	974.15 ^{&} 16	43 ^{&} 13	185.7160	5/2-				
1172.990	3/2-	459.22 <mark>&</mark> 8	100 <mark>&</mark> 28	713.755	3/2-	M1(+E2)	< 0.8	0.264 4	
		488.55 <mark>&</mark> 5	50 <mark>&</mark> 11	684.4908	$(5/2)^{-}$				
		543.66 ^{&} 3	72 ^{&} 15	629.3428	$(5/2)^{-}$	(M1)		0.1677 24	
		785.08 ^{e&} 8	226 ^{e&} 37	387.828	$7/2^{-}$				
(5118.15)	$1/2^{+}$	3843.6 ^{‡a} 4	3.9 6	1274.5	1/2-,3/2-	E1 ^{<i>c</i>}			
		3866.66 ^{‡a} 17	9.4 7	1251.46					
		3899.07 ^{‡a} 24	8.1 8	1219.05	$(1/2^+, 3/2^+)$	(M1) ^C			Mult.: required by level scheme.
		3904.26 ⁴ <i>a</i> 21	9.8 8	1213.86					
		3917.71 ^{+<i>a</i>} 17	11.2 8	1200.47	1/2-,3/2-	D ^C			
		3924.9 ^{+<i>a</i>} 8	1.5 5	1193.2		0			
		3946.19 ⁺ 24	5.6 5	1172.990	3/2-	D			
		3958.49 ⁺ 12	75 4	1159.751	$(3/2)^{-}$	El			
		3962.6 ⁴⁴ 4 3984.31 9	7.1 <i>12</i> 9.4 7	1155.5 1133.80	(1/2+,3/2+)	(M1) ^C			E _{γ} : reported E γ =3981.82 <i>17</i> in (n, γ) E=th (1987Wh01), but level-energy difference gives 3984.35 <i>9</i> , which after removal of recoil is 3984.31,
		4 -							which is adopted here in place of authors' value of 3981.82.
		4023.87 ^{‡<i>a</i>} 23	5.3 5	1094.25	1/2-,3/2-	E1 ^{<i>c</i>}			
		4062.44+ 13	18.7 11	1056.27	$(3/2^+)$				E_{γ} : poor fit. Level-energy difference=4062.44 13.
		4085.1 ^{+<i>a</i>} 3	3.6 5	1033.0	1/2+	0			
		4096.72+ 13	26.5 15	1020.730	3/2-	E1 ^c			E_{γ} : poor fit. Level-energy difference=4097.38 <i>3</i> .
		4113.98* 13	25.7 15	1004.232	3/2+	(M1) ^c			
		4157.42* 17	8.6.6	960.809	3/21				
		$4175.9^{+4}9$	1.3 4	942.2	(5/2) =				
		4182.51+** 19	7.0 5	936.307	(5/2)				E_{γ} : somewhat poor fit. Level-energy difference=4181.81 3.
		4218.9 ^{‡a} 6	1.4 3	899.2					
		4242.45 [‡] 15	17.5 12	875.549	$(3/2)^{-}$	D ^C			
		4271.7 ^{‡a} 4	3.8 5	846.4	$(1/2^+, 3/2^+)$				
		4278.73 [‡] <i>17</i>	20.7 14	839.303	$3/2^{+}$	(M1) ^C			
		4284.91 [‡] <i>12</i>	100 5	833.169	(1/2)-	(E1) ^C			Mult.: E1 or M1 from average reduced intensities in (n,γ) E=2 keV:ARC, ΔJ^{π} consistent with E1.
		4297.14 [‡] 21	8.4 8	820.552	$1/2^{+}$				
		4404.39 [‡] 11	38.9 23	713.755	3/2-	E1 ^{<i>c</i>}			
		4424.61 ^{‡a} 17	13.3 9	693.50					

					Ado	pted Leve	els, Gammas (continued)
						$\gamma(^{231})$	¹ Th) (continued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. ^b	Comments
(5118.15)	$1/2^{+}$	4462.2 [‡] 3	2.4 3	655.939?	$(7/2^{-})$		
	,	4498.5 [‡] 3	2.3 4	619.638	3/2-	E1 ^{<i>c</i>}	
		4523.95 [‡] 25	15.3 23	593.6173	$(3/2)^{-}$	E1 ^{<i>c</i>}	
		4527.09 [‡] 11	63 4	590.8396	3/2-	E1 ^C	
		4563.45 [‡] 9	49.6 23	554.6503	$(1/2)^{-}$	E1 ^C	
		4581.4 ^{‡a} 7	1.5 3	536.7			
		4616.9 ^{‡a} 5	2.7 4	501.2			
		4738.1 ^{‡a} 3	13.7 23	380.0	1/2+,3/2+	M1 ^C	
		4769.8 ^{‡a} 5	3.8 6	348.3	$(1/2^+, 3/2^+)$	M1 ^C	
		4845.92 [‡] 6	16.5 8	272.1800	3/2+	M1 ^C	
		4870.1 [‡] <i>3</i>	2.6 3	247.5867	$1/2^{+}$	M1 ^C	
		4896.82 [‡] 21	7.3 6	221.3966	3/2+	M1 ^C	
		5117.69 [‡] <i>17</i>	4.5 3	0.0	5/2+		
(5119.84)	$1/2^{+}$	3848.7 <mark>#</mark> 6	33 7	1271.1	$1/2^{-}, 3/2^{-}$	E1 ^{<i>c</i>}	
		3898.0 <mark>#</mark> 29	19 7	1222	$(1/2^+, 3/2^+)$	(M1) ^C	
		3900.9 [#] 32	17 7	1219.05	$(1/2^+, 3/2^+)$	(M1) ^C	
		3918.0 [#] 8	26 7	1200.47	$1/2^{-}, 3/2^{-}$	D ^C	
		3947.3 [#] 6	40 10	1172.990	3/2-	D ^C	E_{γ} : somewhat poor fit. Level-energy difference=3946.19 24.
		$3960.9^{\#} 4$	55 7	1159.751	(3/2)-	E1 ^{<i>c</i>}	
		3985.7 [#] 26	21 7	1133.80	$(1/2^+, 3/2^+)$	(M1) ^C	
		4016.7# 4	69 7	1102.252	3/2-	E1 ^c	
		4038.8# 9	29 10	1081.331	1/2-,3/2-	D	
		4044.9 [#] 8	36 10	1074.346	(3/2)-	D	
		4099.0" 3	81 10	1020.730	3/2-	El	
		4116.3" 5	43 /	1004.232	3/2	De	
		4245.1" 10	36 12	8/5.549	(3/2)	D	
		4250.1" 11	31 12	809.7	$1/2^{+}$		
		$42/0.3^{+1}$ 10	21 10	840.4	$(1/2^+, 3/2^+)$	$(MI)^{\bullet}$	
		4219.9" 14 1285 5 <mark>#</mark> 8	31 14 38 10	039.303 833 160	$\frac{3}{2}$	D ^c	
		4325 0 [#] 12	17 7	703 027	(1/2) $1/2^+$	M1 ^C	
			1// 81/7	713 755	1/2 3/2-	F1 ^C	
		4434 3 [#] 5	48 7	687 631	$\frac{3}{2}$ 1/2 ⁺	D ^C	
		4500 0 [#] 3	88 7	619 638	3/2-	E1 ^C	
		4524 7 [#] 9	67 29	593 6173	$(3/2)^{-}$	E1 ^C	
			J. L /	0,0,0170	(0)=)		

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult. ^b
(5119.84)	$1/2^{+}$	4528.5 [#] 7	100 29	590.8396	3/2-	E1 ^C
		4564.9 [#] 3	74 7	554.6503	$(1/2)^{-}$	E1 ^{<i>c</i>}
		4733.4 [#] <i>f</i> 5	41 7	386.5?	$(1/2^+, 3/2^+)$	(M1) ^C
		4770.2 ^{#f} 10	19 7	348.3	$(1/2^+, 3/2^+)$	(M1) ^C
		4847.9 [#] 7	29 7	272.1800	3/2+	M1 ^C
		4872.7 [#] 7	31 7	247.5867	$1/2^{+}$	M1 ^C
		4898.5 [#] 7	36 7	221.3966	3/2+	M1 ^C

[†] From ²³⁵U alpha decay, unless otherwise specified. Precise gamma-ray energies available from (n,γ) E=th were used in deducing weighted averaged energies listed in ²³⁵U α decay dataset. For γ rays from levels above 634 keV and of J<15/2, all energies and branching ratios are available only from (n,γ) E=thermal.

[‡] Primary γ ray in (n, γ) E=thermal.

[#] Primary γ ray in (n, γ) E=2 keV res.

[@] From ²³¹Ac β^- decay.

16

& From ²³⁰Th(n,γ), E=th.

^{*a*} Primary γ in (n,γ) E=th populates a level from which no secondary γ rays are known.

^b Based on ce data in (n,γ) E=th (1987Wh01), with multipolarities of primary γ rays from average resonance capture, deduced from average reduced intensities. In cases where upper limit on α (K)exp for secondary γ rays excludes all mult other than E1 or E2, they were shown as (M1), (E1) or (E2) when the γ -ray placement implies a certain multipolarity. Multipolarities shown as E0+M1(+E2) indicate that the α (exp) require some M1(+E2) E2 admixture to E0. Exceptions are noted.

^{*c*} Multipolarity of primary γ rays in (n, γ) E=th and (n, γ) E=2 keV from average resonance capture (ARC) data, where these were deduced from average reduced intensities (see 1987Wh01 for details).

^d Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^e Multiply placed with undivided intensity.

^f Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

 $^{231}_{90}{
m Th}_{141}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{231}_{90}{\rm Th}_{141}$

 $^{231}_{90}\text{Th}_{141}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $^{231}_{90}{\rm Th}_{141}$

 $^{231}_{90} Th_{141}$

 $^{231}_{90} Th_{141}$

 $^{231}_{90}{\rm Th}_{141}$

From ENSDF

 $^{231}_{90}{
m Th}_{141}$

24

 $^{231}_{90}{\rm Th}_{141}\text{-}24$

 $^{231}_{90}{
m Th}_{141}$

Band(G): v3/2[501]

(5/2)- 914.90

				(3/2)-	875.549
		Band(F	"): v5/2[503]		·
		(5/2)-	684.4908		
Band(H	E): v1/2[501]		•		
5/2-	595.9738				
(3/2)-	593.6173				

(1/2)- 554.6503

 $^{231}_{90}{\rm Th}_{141}$

				Band(L): v + v5/2[1/2[631]⊗0+ 633]⊗2+	
				5/2 ⁺	889.997	
				3/2+	839.303	
				<u>1/2</u> +	820.552	
				(5/2)+	735.263	
Band(H): $\sqrt{7/2}[743]$ (15/2 ⁻) 704				3/2 ⁺	709.099	
<u></u>			Band (K): 12/2[761]	1/2+	687.631	
			$(7/2^{-})$ 655.939			
			(5/2) ⁻ 629.3428			Band(M): v3/2[631]⊗0 ⁻
			*			<u>3/2</u> <u>619.638</u>
	Band(1): $\sqrt[7]{2[624]}$ (9/2 ⁺) 579		3/2- 590.8396			
		Band(I)+ v5/2[622]				
(11/2 ⁻) 530.23		$(11/2^+)$ 530				
	$(7/2)^+$ 510.897					
9/2- 142 452.192		(0)(0) [±]				
		(9/2) 447.4				
64						
7/2- 387.828		(7/2) ⁺ 377.573				
		5/2+ 301.7429				

Band(O): v1 v1/2[631	/2[640] +]⊗0+		
3/2+,5/2+	966.0	Band(Q):	v3/2[631]⊗0 ⁺
		3/2+	960.809

Band(P): v1/2[770]

(1/2)- 833.169

3/2+ 808.508

1/2+ 793.027

(7/2)-	720.302
3/2-	713.755

Band(N): $v5/2[752] \otimes 0^+$ + $v3/2[631] \otimes 0^-$

 $\underbrace{(7/2^-)}_{---} \underbrace{634.046}_{----}$

 $(5/2^{-})$ ______ 623.935

 $^{231}_{90}{\rm Th}_{141}$