231 **Fr** β^- decay (17.6 s) 2001**Fr05**

History

Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Balraj Singh, Jagdish K. Tuli, and Edgardo Browne	NDS 185, 560 (2022)	31-Aug-2022	

Parent: ²³¹Fr: E=0.0; $J^{\pi}=(1/2^+)$; $T_{1/2}=17.6 \text{ s} 6$; $Q(\beta^-)=3864 14$; $\%\beta^-$ decay=100.0

 231 Fr-J^{π},T_{1/2}: From 231 Fr Adopted Levels.

²³¹Fr-Q(β^{-}): From 2021Wa16.

2001Fr05: ²³¹Fr was produced by spallation of 1 GeV proton beam on uranium targets. The activity was mass-separated at CERN ISOLDE on-line separator, deposited on a magnetic tape, and then radiations counted at two stations. Measured E γ , I γ , ce, $\beta\gamma$ -, $\gamma\gamma$ - and (ce) γ -coin, using HPGe detector for γ rays, plastic scintillators for β^- particles, and a cooled Si(Li) detector with a magnetic mini-orange filter for conversion electrons. Additional measurements were done with the OSIRIS fission product separator in Sweden. See also 2001Bo34 from the same lab and group.

1985Hi02: ²³¹Fr produced in spallation reaction of ²³⁸U induced by 600 MeV protons from the CERN synchrocyclotron, followed by mass-separation using the ISOLDE II online separator. Measured $E\gamma$, $I\gamma$, x rays, $T_{1/2}$ of ²³¹Fr decay. Three γ rays in ²³¹Ra were reported, which are listed in comments in this dataset.

The decay scheme proposed by 2001Fr05 is essentially based on analogy with the structure of N=143 isotone ²³³Th. Evaluators consider the decay scheme to be incomplete in many ways: 1. many γ rays, carrying, significant transition intensities, are unplaced; 2. multipolarities of some of the low-energy transitions, with expected high internal conversion, are not known precisely; 3. with Q value of 3864 keV, the highest proposed level in ²³¹Ra is at 1774 keV, which leaves the possibility of either unobserved or unplaced transitions in the decay scheme; 4. several transitions are multiply placed with undivided intensities; 5. the $\gamma\gamma$ -coin results are available only in a few cases. In this scenario, all the β feedings and log *ft* values should be treated as tentative.

²³¹Ra Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	Comments
0.0	(5/2+)	103.9 s <i>14</i>	T _{1/2} : from Adopted Levels. J ^{π} : Nilsson assignment ν 5/2[622] to this bandhead is based on the energy of the ν 5/2[622] orbital in ²³³ Th. Also on the retardation of the 66-keV E2 γ ray from the 1/2 ⁺ , ν 1/2[631] state (at 66 keV) to the 5/2 ⁺ , ν 5/2[622] (ground state).
46.23 11	(7/2+)		E(level): level (2001Fr05) in comparison to a low-energy level in N=143 isotone ²³³ Th, and from 49.3-keV transition from the 95.5-keV level.
66.21 9	(1/2+)	≈53 µs	Configuration: $1/2^+$ member of configuration= $\nu 5/2[622]$. J^{π} : Nilsson orbital assignment $\nu 1/2[631]$ to this level is based on the expected energy of this orbital, and on the systematics of the B(E1) ratios between γ rays from the 1/2, 1/2[501] state to the 1/2 ⁺ and 3/2 ⁺ members of the 1/2[631] rotational band in several odd-A nuclei near ²³¹ Ra.
			$T_{1/2}$: from 66.2 γ (t) and $K_{\alpha 2}$ x-ray(t). 2001Fr05 mention that the half-life is an estimate only and has significant systematic and statistical uncertainties
87.64 13	(3/2+)		Configuration: $3/2^+$ member of $v1/2[631]$.
95.50 <i>9</i>	(5/2 ⁻)	4.72 ns 6	J^{π} : Nilsson orbital assignment $v5/2[572]$ to this level is based on the expected energy of this orbital, and on the similarity of B(E1) ratios between γ rays from the 5/2[752] to the 5/2 ⁺ and 7/2 ⁺ members of the 5/2[622] rotational band in 231 Th and 229 Ra.
205 (2.1)	(5.12)		$T_{1/2}$: from $\beta\gamma(t)$. Other: 4.35 ns 44 from $\beta\gamma\gamma(t)$.
285.62 10	(5/2 ')		J [*] : Nilsson orbital assignment $v5/2[633]$ to this level is based on the expected energy of this orbital, and on the similarity of B(M1) ratios between γ rays from the 5/2[633] to the 5/2 ⁺ and 7/2 ⁺ members of the 5/2[622] rotational band in ²³³ Th.
397.33 <i>13</i>	(3/2 ⁺)		J ^{π} : Nilsson orbital assignment ν 3/2[631] to this level is based on the expected energy of this orbital, and on the similarity of B(M1) ratios between γ rays to members of the 1/2[631] and 5/2[622] rotational bands.
455.0 <i>4</i> 458.95 <i>16</i> 503.33 <i>21</i> 511.36 <i>15</i>	$(1/2^{-} \text{ to } 9/2^{-})$ $(1/2^{-},3/2^{-})$ $(1/2,3/2,5/2^{+})$ $(1/2^{+},3/2^{+})$	≤15 ps	$T_{1/2}$: from $\beta\gamma\gamma(t)$.

Continued on next page (footnotes at end of table)

²³¹Fr β^- decay (17.6 s) 2001Fr05 (continued)

²³¹Ra Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	Comments
520.29 14	(1/2 ⁻)	92 ps 5	J^{π} : Nilsson orbital assignment $\nu 1/2[501]$ to this level is based on the characteristic β^{-} decay pattern between the $1/2[400]$ (ground state in ²³¹ Fr) and $1/2[501]$ orbitals in several odd-A nuclei near ²³¹ Ra. See also arguments for Nilsson orbital assignment to ²³¹ Fr ground state.
			$T_{1/2}$: from $\beta \gamma \gamma(t)$.
605.4 <i>3</i>	$(1/2^{-}, 3/2, 5/2^{+})$		
620.59 24	(3/2, 5/2, 7/2)	≤12.5 ps	$T_{1/2}$: from $\beta \gamma \gamma(t)$.
646.6 <i>4</i>	$(1/2^{-} \text{ to } 7/2)$		
740.72 18	$(3/2^+, 5/2^+)$		
750.86 18	$(1/2, 3/2, 5/2^+)$		
760.5 4	$(1/2,3/2,5/2^+)$		
772.80 15	$(1/2^+, 3/2)$		
796.2 <i>3</i>	$(1/2, 3/2, 5/2^+)$		
834.63 18	$(1/2^+, 3/2, 5/2^-)$		
929.2 4	$(1/2, 3/2, 5/2^+)$		
931.9 <i>3</i>	(1/2, 3/2, 5/2)		
944.31 22	$(1/2^+, 3/2, 5/2^+)$		
971.1 6	$(1/2, 3/2, 5/2^+)$		
1138.79 24	$(1/2, 3/2, 5/2^+)$		
1634.1 4	$(1/2, 3/2, 5/2^+)$		
1693.3 <i>3</i>	$(1/2^+, 3/2, 5/2^+)$		
1718.2 <i>3</i>	$(1/2, 3/2, 5/2^+)$		
1730.1 4	$(1/2, 3/2, 5/2^+)$		
1773.90 25	$(1/2, 3/2, 5/2^+)$		

[†] Deduced from a least-squares fit to γ -ray energies. The gamma rays with uncertain placements are included in the fitting procedure.

[‡] From the Adopted Levels.

[#] From $\beta\gamma(t)$ or $\beta\gamma\gamma(t)$ for excited states above 80 keV, using Advanced Time Delayed system (2001Fr05, also 2001Bo34).

β^{-} radiations

E(decay)	E(level)	Ιβ ^{-†#}	$\log ft^{\ddagger}$	Comments
(2090 14)	1773.90	2.4 4	6.3	av E β =757.2 58
(2134 14)	1730.1	1.4 2	6.5	av E β =775.3 58
(2146 14)	1718.2	0.9 1	6.7	av E β =780.2 58
(2171 14)	1693.3	2.0 2	6.4	av $E\beta = 790.5\ 58$
(2230 14)	1634.1	1.0 2	6.8	av $E\beta = 814.958$
(2725 14)	1138.79	0.7 2	7.3	av $E\beta = 1021.959$
(2893 14)	971.1	0.28 5	7.8	av $E\beta = 1092.5\ 59$
(2920 14)	944.31	0.9 1	7.3	av $E\beta = 1103.859$
(2932 14)	931.9	0.4 1	7.6	av E β =1109.0 59
(2935 14)	929.2	0.2 1	7.9	av Eβ=1110.1 59
(3029 14)	834.63	1.1 2	7.2	av $E\beta = 1150.0 \ 60$
(3068 14)	796.2	1.0 2	7.3	av E β =1166.3 60
(3091 14)	772.80	1.9 3	7.0	av E β =1176.2 60
(3104 14)	760.5	0.5 2	7.6	av E β =1181.4 60
(3113 14)	750.86	2.4 2	6.9	av E β =1185.4 60
(3123 14)	740.72	1.7 3	7.1	av E β =1189.7 60
(3217 [@] <i>14</i>)	646.6	0.10 9	8.4	av E β =1229.6 60
(3243 14)	620.59	1.6 2	7.2	av $E\beta = 1240.6\ 60$

Continued on next page (footnotes at end of table)

231 Fr β^- decay (17.6 s) 2001Fr05 (continued)

$I\beta^{-\dagger \#}$ Log ft[‡] E(decay) E(level) Comments (3259 14) 605.4 1.4 3 7.3 av Eβ=1247.0 60 av $E\beta$ =1283.1 60 av $E\beta$ =1286.8 60 (3344 14) 520.29 45 3 5.8 (3353 14) 511.36 1.0 2 7.5 av $E\beta = 1290.2 \ 60$ (3361 14) 0.8 1 7.6 503.33 (3405 14) 458.95 1.2 2 7.4 av $E\beta = 1309.1 \ 60$ (3409 14) 0.13 3 av $E\beta = 1310.7 \ 60$ 455.0 8.4 (3467 14) 397.33 3.3 4 7.0 av E β =1335.2 60 (3578[@] 14) 285.62 2.8 3 7.1 av Eβ=1382.6 60 I β^- : β feeding of 2.8% is unrealistic for $\Delta J=2$, $\Delta \pi=no$. (3769[@] 14) >9.4^{1u} 95.50 < 0.6 av E\beta=1420.3 60 I $\beta = 0.1$ 5. (3798 14) av E β =1475.8 60 66.21 31 15 6.2 I β^- : combined feeding to 66- and 87-keV levels.

 β^{-} radiations (continued)

[†] Deduced by evaluators from γ -ray transition intensity balance. These values should be considered as only approximate as the decay scheme is considered incomplete by the evaluators for reasons mentioned in the header comments.

[‡] All the values should be considered as only approximate since the decay scheme is considered by the evaluators as incomplete.

[#] Absolute intensity per 100 decays.

[@] Existence of this branch is questionable.

²³¹Fr β^- decay (17.6 s) 2001Fr05 (continued)

 $\gamma(^{231}\text{Ra})$

I γ normalization: Deduced by evaluators, assuming no β^- feeding to g.s. and 46-keV level, and using summed I(γ +ce)=100% to these levels. Note that significant I(γ +ce) intensity is unplaced in the decay scheme. In addition there may be levels above 1775 keV from which transitions are either not observed or not assigned. Measured I(K x rays)=39 4 (1985Hi02) relative to 100 for 432.6-keV γ ray.

Eγ	I_{γ}^{a}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^π	Mult. <mark>&</mark>	$\alpha^{\boldsymbol{b}}$	Comments
(21.4)	≤0.8	87.64	(3/2+)	66.21	(1/2+)	[M1]	286 4	α (L)=216 3; α (M)=52.4 8 α (N)=13.82 20; α (O)=3.15 5; α (P)=0.550 8; α (Q)=0.0433 6 E _{γ} : γ ray was not observed.
46.3 ^{<i>d</i>} 2	0.27 5	46.23	$(7/2^+)$	0.0	(5/2+)	[M1]	29.5 6	$\alpha(L)=22.35; \alpha(M)=5.3411$ $\alpha(N)=1.413; \alpha(O)=0.3227; \alpha(P)=0.056111; \alpha(O)=0.004419$
49.3 <i>I</i>	0.71 4	95.50	(5/2 ⁻)	46.23	(7/2+)	E1	0.727 10	B(E1) \downarrow =3.2×10 ⁻⁵ 3 (2001Fr05) α (L1)exp+ α (L2)exp≤9 α (L)=0.549 9; α (M)=0.1345 21 α (N)=0.0347 6; α (O)=0.00734 11; α (P)=0.001061 16; α (Q)=4.16×10 ⁻⁵ 6 δ (M2/E1)<0.11. Possible coin, with 85.4-keV x ray.
66.2 1	5.2 2	66.21	(1/2+)	0.0	(5/2+)	E2	67.4 10	B(E2) \downarrow =0.12 5 (2001Fr05) α (L1)exp+ α (L2)exp=28 4; α (L3)exp=20 3; α (M)exp=14 2; α (N)exp=4.0 8 α (L)=49.5 8; α (M)=13.45 22 α (N)=3.55 6; α (O)=0.753 12; α (P)=0.1083 17; α (Q)=0.000263 4 δ (E2/M1)>2 or 12 9 12; ΔI^{α} consistent with pure E2
^x 77.1 3	0.7 3					E1	0.220 4	$\alpha(L) \exp + \alpha(L) \exp \leq 2.8$ $\alpha(L) = 0.167 \ 3; \ \alpha(M) = 0.0404 \ 7$ $\alpha(N) = 0.01047 \ 19; \ \alpha(O) = 0.00226 \ 4; \ \alpha(P) = 0.000345 \ 6; \ \alpha(Q) = 1.58 \times 10^{-5} \ 3$ $\delta(M2/E1) < 0.18.$
^x 82.5 1 ^x 83.3 1 ^x 86.2 1	$1.36\ 6$ 2.47 9 $4.1^{@}\ 3$							
95.5 <i>I</i>	14.0 10	95.50	(5/2-)	0.0	(5/2+)	E1	0.1247 18	B(E1)↓=8.7×10 ⁻⁵ <i>13</i> (2001Fr05) α (L1)exp+ α (L2)exp≤0.5; α (L3)exp≤0.15 α (L)=0.0945 <i>14</i> ; α (M)=0.0228 <i>4</i> α (N)=0.00592 <i>9</i> ; α (O)=0.001289 <i>19</i> ; α (P)=0.000201 <i>3</i> ; α (Q)=9.85×10 ⁻⁶ <i>14</i> E γ =95.6 <i>4</i> , I γ =17 <i>3</i> (1985Hi02), relative to 100 for 432.6 γ . δ (M2/E1)<0.11.
x96.8 3 x97.5 2	0.37 8 0.70 [@] 12					M1	3.35 5	α (L1)exp+ α (L2)exp=2.3 9; α (L2)exp≤0.82 α (L)=2.54 4; α (M)=0.607 10 α (N)=0.1600 25; α (O)=0.0365 6; α (P)=0.00636 10; α (Q)=0.000500 8 β (E2)M1)<0.4
123.1 2	0.70 10	520.29	$(1/2^{-})$	397.33	$(3/2^+)$	E1	0.291 4	$B(E1)\downarrow=9.8\times10^{-6} \ 16 \ (2001Fr05)$

4

				231	$\operatorname{Fr}\beta^{-}\operatorname{decay}$	(17.6 s) 2	001Fr05	(continued)		
γ ⁽²³¹ Ra) (continued)										
Eγ	I_{γ}^{a}	E _i (level)	J_i^π	\mathbf{E}_{f}	J_f^π	Mult. ^{&}	δ ^{&}	α b	Comments	
									$\begin{split} &\alpha(\text{L1})\text{exp} + \alpha(\text{L2})\text{exp} \leq 0.38 \\ &\alpha(\text{K}) = 0.227 \ 4; \ \alpha(\text{L}) = 0.0484 \ 7; \ \alpha(\text{M}) = 0.01165 \ 17 \\ &\alpha(\text{N}) = 0.00303 \ 5; \ \alpha(\text{O}) = 0.000665 \ 10; \ \alpha(\text{P}) = 0.0001056 \\ &16; \ \alpha(\text{Q}) = 5.58 \times 10^{-6} \ 8 \\ &\delta(\text{M2/E1}) < 0.17. \end{split}$	
^x 225.4 2	0.69 [@] 13					M1		1.565 22	$\begin{aligned} &\alpha(\text{K})\exp=1.5\ 5\\ &\alpha(\text{K})=1.259\ 18;\ \alpha(\text{L})=0.232\ 4;\ \alpha(\text{M})=0.0555\ 8\\ &\alpha(\text{N})=0.01463\ 21;\ \alpha(\text{O})=0.00334\ 5;\ \alpha(\text{P})=0.000582\ 9;\\ &\alpha(\text{Q})=4.56\times10^{-5}\ 7\\ &\alpha(\text{K})\ \exp\ \text{gives}\ \delta(\text{E2/M1})<0.5. \end{aligned}$	
239.4 ^{cd} 3	1.1 ^{<i>c</i>} [@] 2	285.62	(5/2+)	46.23	(7/2 ⁺)	(M1)		1.324 19	α (K)exp=1.2 3 α (K)=1.065 16; α (L)=0.196 3; α (M)=0.0469 7 α (N)=0.01236 18; α (O)=0.00282 4; α (P)=0.000491 7; α (Q)=3.85×10 ⁻⁵ 6 α (K)exp for a doubly-placed γ ray. δ (E2/M1)<0.45 for a doubly placed γ ray.	
239.4 ^{cd} 3 252.5 2 261.6 3	1.1 ^c 2 0.77 15 0.58 [@] 11	750.86 772.80 772.80	$(1/2,3/2,5/2^+)$ $(1/2^+,3/2)$ $(1/2^+,3/2)$	511.36 520.29 511.36	$(1/2^+, 3/2^+)$ $(1/2^-)$ $(1/2^+, 3/2^+)$	(M1)			Mult.: same assignment of (M1) is given for the doublet.	
^x 273.7 2 285.7 ^d 2	1.0 2 5.8 5	285.62	(5/2+)	0.0	(5/2+)	M1		0.811 12	α (K)exp=0.71 <i>12</i> ; α (L1)exp+ α (L2)exp=0.10 <i>5</i> α (K)=0.653 <i>10</i> ; α (L)=0.1199 <i>17</i> ; α (M)=0.0286 <i>4</i> α (N)=0.00755 <i>11</i> ; α (O)=0.001722 <i>25</i> ; α (P)=0.000300 <i>5</i> ; α (Q)=2.35×10 ⁻⁵ <i>4</i>	
309.9 2	5.1 5	397.33	(3/2+)	87.64	(3/2 ⁺)	M1		0.648 9	δ (E2/M1)<0.4. α (K)exp=0.58 <i>11</i> α (K)=0.522 <i>8</i> ; α (L)=0.0958 <i>14</i> ; α (M)=0.0229 <i>4</i> α (N)=0.00603 <i>9</i> ; α (O)=0.001375 <i>20</i> ; α (P)=0.000240 <i>4</i> ; α (Q)=1.88×10 ⁻⁵ <i>3</i> δ (E2/M1)<0.35.	
314.4 <i>3</i> 331.2 2	0.47 <i>15</i> 4.5 6	834.63 397.33	$(1/2^+, 3/2, 5/2^-)$ $(3/2^+)$	520.29 66.21	$(1/2^{-})$ $(1/2^{+})$	M1		0.540 8	$\alpha(K) \exp[=0.50 \ I5]$ $\alpha(K) = 0.435 \ 7; \ \alpha(L) = 0.0797 \ I2; \ \alpha(M) = 0.0190 \ 3$ $\alpha(N) = 0.00502 \ 7; \ \alpha(O) = 0.001144 \ I7; \ \alpha(P) = 0.000200 \ 3;$ $\alpha(Q) = 1.564 \times 10^{-5} \ 22$ $\delta(E2/M1) < 0.55.$	
x346.5 3 353.6 3 359.5 3 363.4 2	1.2 [@] 3 0.8 3 0.51 [@] 10 4.2 4	750.86 455.0 458.95	(1/2,3/2,5/2 ⁺) (1/2 ⁻ to 9/2 ⁻) (1/2 ⁻ ,3/2 ⁻)	397.33 95.50 95.50	(3/2 ⁺) (5/2 ⁻) (5/2 ⁻)	M1(+E2)	0.7 7	0.31 11	$\alpha(K)\exp \le 0.27$ B(M1) $\downarrow \ge 0.032$ (2001Fr05) $\alpha(K)\exp = 0.24$ 10	

S

 $^{231}_{88}{\rm Ra}_{143}\text{-}5$

L

From ENSDF

²³¹₈₈Ra₁₄₃-5

231 Fr β^- decay (17.6 s) 2001Fr05 (continued)										
$\gamma(^{231}$ Ra) (continued)										
E_{γ}	I_{γ}^{a}	E _i (level)	${ m J}^{\pi}_i$	\mathbf{E}_{f}	J_f^π	Mult. ^{&}	$\delta^{\&}$	$\alpha^{\boldsymbol{b}}$	Comments	
375.7 ^c 3	0.8 ^C 2	772.80	(1/2+,3/2)	397.33	(3/2+)				$\begin{aligned} &\alpha(\text{K}) = 0.243 \ 97; \ \alpha(\text{L}) = 0.051 \ 11; \\ &\alpha(\text{M}) = 0.0124 \ 24 \\ &\alpha(\text{N}) = 0.0033 \ 7; \ \alpha(\text{O}) = 0.00074 \ 15; \\ &\alpha(\text{P}) = 0.00013 \ 3; \ \alpha(\text{Q}) = 8.7 \times 10^{-6} \ 35 \end{aligned}$	
375.7 [°] 3	$0.8^{\circ} 2$	834.63	$(1/2^+, 3/2, 5/2^-)$	458.95	$(1/2^{-}, 3/2^{-})$					
38/.73	0.55 11	1138.79	$(1/2,3/2,5/2^{+})$ (1/2-3/2-)	750.86	$(1/2,3/2,5/2^{+})$				$P(E_1) > 7.2 \times 10^{-5}$ (2001E-05)	
392.81 3	1.14 $1.9^{@} 2$	438.93 397.33	(1/2, 3/2) $(3/2^+)$	0.0	$(1/2^{-})$ $(5/2^{+})$	(E2(+M1))	>0.7	0.24 18	$\alpha(K)\exp \le 0.18$	
									$\alpha(K)=0.19\ 15; \ \alpha(L)=0.040\ 18; \ \alpha(M)=0.010\ 4 \ \alpha(N)=0.0025\ 11; \ \alpha(O)=0.00057\ 25; \ \alpha(P)=0.00010\ 5; \ \alpha(Q)=7\times10^{-6}\ 6 \ \alpha(K)$ exp gives E2(+M1) with $\delta(E2/M1)>0.7$ or E1, ΔJ^{π} favors E2(+M1).	
$x_{400.5}^{\mp} 3$	0.5 2	502.22	$(1/2) 2/2 5/2^{+})$	97.64	$(2/2^{+})$					
415.6 3	2.6.3	503.33	$(1/2,3/2,5/2^+)$	87.64	$(3/2^+)$					
$423.8^{\circ} 2$	0.72	031.0	$(1/2^{-}, 3/2^{+})$ $(1/2^{-}3/2^{-}5/2)$	87.04 503.33	$(3/2^{+})$ $(1/2 3/2 5/2^{+})$					
432.6 2	100.0 50	520.29	(1/2, 5/2, 5/2) $(1/2^{-})$	87.64	(1/2,3/2,3/2) $(3/2^+)$	E1		0.01588 22	B(E1) \downarrow =3.22×10 ⁻⁵ 21 (2001Fr05) α (K)exp≤0.022 α (K)=0.01291 19; α (L)=0.00226 4; α (M)=0.000535 8 α (N)=0.0001401 20; α (O)=3.15×10 ⁻⁵ 5; α (P)=5.33×10 ⁻⁶ 8; α (Q)=3.68×10 ⁻⁷ 6 Ey=432.6 2, Iy=100 3 (1985Hi02).	
437.4° 3	1.12° 15	503.33	$(1/2,3/2,5/2^+)$ $(1/2^+,2/2,5/2^-)$	66.21	$(1/2^+)$					
437.4 3	4.0 4	511.36	$(1/2^{+},3/2,5/2^{+})$ $(1/2^{+},3/2^{+})$	66.21	(3/2) $(1/2^+)$	M1+E2	0.45 30	0.21 4	α (K)exp=0.17 4 α (K)=0.17 4; α (L)=0.032 4; α (M)=0.0077	
^x 448.1 <i>3</i>	1.7 3								α (N)=0.00203 24; α (O)=0.00046 6; α (P)=8.0×10 ⁻⁵ 11; α (Q)=6.0×10 ⁻⁶ 12 Possible coin. with 88.2-keV x ray. α (K)exp≤0.17 Possible coin. with 88.2 keV x ray.	
454.0 2	78.1 48	520.29	(1/2 ⁻)	66.21	(1/2+)	E1		0.01437 20	Possible colli. With 86.2-Ke V X ray. B(E1)↓=2.18×10 ⁻⁵ 15 (2001Fr05) α (K)exp≤0.024 α (K)=0.01169 17; α (L)=0.00203 3; α (M)=0.000482 7 α (N)=0.0001261 18; α (O)=2.84×10 ⁻⁵ 4;	

6

From ENSDF

 $^{231}_{88}$ Ra 143 -6

L

231 Fr β^- decay (17.6 s) 2001Fr05 (continued)										
γ ⁽²³¹ Ra) (continued)										
Eγ	I_{γ}^{a}	E _i (level)	J_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Comments				
						α (P)=4.81×10 ⁻⁶ 7; α (Q)=3.34×10 ⁻⁷ 5 E γ =454.1 2, I γ =80 4 (1985Hi02), relative to 100 for 432.6 γ .				
472.8 5	1.2 [@] 3	931.9	(1/2,3/2,5/2)	458.95	$(1/2^-, 3/2^-)$					
^x 477.9 4	2.4 ^{^w} 2					$\alpha(\mathbf{K}) \exp \leq 0.089$				
^x 492.9 4	2.2.2					Possible coin. with 85.0 and 88.4-keV x ray. Possible coin. with 88.6-keV x ray.				
^x 505.4 4	2.0 2									
510.3 5	1.4 3	605.4	$(1/2^-, 3/2, 5/2^+)$	95.50	$(5/2^{-})$	E_{γ}, I_{γ} : from $\gamma\gamma$ -coin measurement.				
x513.6 ^{‡†} 3	0.73 [@] 11	(20.50		05.50	(5/2-)					
525.2 <i>3</i> 539 1 3	6.8 7 4 3 9	620.59 605.4	(3/2,5/2,1/2) $(1/2^{-} 3/2 5/2^{+})$	95.50	(5/2) $(1/2^+)$	B(M1) $\downarrow \ge 0.016$ (2001Fr05) Possible coin with 88.2- and 85.4-keV x rays				
x542 1 4	$0.37^{@}$ 11	005.4	(1/2,5/2,5/2)	00.21	(1/2)	10351010 com, with 00.2^{-} and 05.4^{-} KeV x hays.				
55134	$13^{@}3$	646.6	$(1/2^{-}$ to $7/2)$	95 50	$(5/2^{-})$					
^x 572.7 4	1.5 4	0.010	(1/2 00 //2)	20100	(0/=)					
^x 617.2 5	3.1 [@] 3									
620.2 ^d 5	1.12 [@] 15	620.59	(3/2,5/2,7/2)	0.0	$(5/2^+)$	$B(E1)\downarrow \ge 1.8 \times 10^{-5} (2001 Fr 05)$				
645.2 3	1.0 5	740.72	$(3/2^+, 5/2^+)$	95.50	$(5/2^{-})$					
653.2 <i>3</i>	1.1 3	740.72	$(3/2^+, 5/2^+)$	87.64	$(3/2^+)$					
659.0^{42} 5	1.0 2	944.31 750.86	$(1/2^+, 3/2, 5/2^+)$ $(1/2, 3/2, 5/2^+)$	285.62	$(5/2^+)$ $(3/2^+)$	Possible coin with 88.6-keV x ray				
672 8 [‡] 5	0.8 2	760.5	$(1/2,3/2,5/2^+)$	87.64	$(3/2^+)$	i ossible com, with ob.o-ke v x ray.				
$674.6^{\ddagger}.5$	3.0.3	740.72	$(3/2^+ 5/2^+)$	66.21	$(3/2^+)$					
$684.6^{C^{\ddagger}}$ 5	2.0.5 2.7 <mark>0</mark> .2	750.86	(3/2, 3/2) $(1/2, 3/2, 5/2^+)$	66.21	$(1/2^+)$					
684.6 ^C 5	2.7° 2	772.80	$(1/2^+, 3/2)$	87.64	$(3/2^+)$					
694.4 ^C 4	1.3 ^c 7	740.72	$(3/2^+, 5/2^+)$	46.23	$(7/2^+)$					
$694.4^{c}_{\#}4$	1.3 ^c 7	760.5	$(1/2,3/2,5/2^+)$	66.21	(1/2+)					
704.8# 5	1.5 2	1634.1	$(1/2,3/2,5/2^+)$	929.2	$(1/2,3/2,5/2^+)$					
$706.5^{\#}5$	2.0 2	772.80	$(1/2^+, 3/2)$	66.21	$(1/2^+)$	Possible coin. with 88.2-keV x ray.				
708.6# 5	1.13 15	796.2	$(1/2,3/2,5/2^+)$	87.64	$(3/2^+)$					
*/19.6+ 5	1.1 4	506.0		(())	(1.0+)					
730.0# 3 ×735 7 4	2.7 5	796.2	$(1/2,3/2,5/2^+)$	66.21	$(1/2^{+})$					
740.5 5	0.52 14	740.72	$(3/2^+, 5/2^+)$	0.0	$(5/2^+)$					
746.9 4	2.0 4	834.63	$(1/2^+, 3/2, 5/2^-)$	87.64	$(3/2^+)$					
x756.2 5	0.6 2									
^x 770.5 ⁺ 3	2.5 3									
772.8 ⁺ 3	1.8 2	772.80	$(1/2^+, 3/2)$	0.0	$(5/2^+)$					
x x 1 x x 1 x x 1 x x x x x x x x x x x	1.0 1									
010.0 0	1.0 4									

From ENSDF

 $^{231}_{88} {
m Ra}_{143}$ -7

L

				²³¹ F	β^{-} decay (17.6 s)	2001Fr05 (continued)
					$\gamma(^{231}\text{Ra})$ (6	continued)
Eγ	I_{γ}^{a}	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	J_f^π	
834.5.6	$1.3^{@}$ 2	834.63	$(1/2^+, 3/2, 5/2^-)$	0.0	$(5/2^+)$	
841 4 ^{C‡} 6	0.9° 2	929.2	$(1/2 \ 3/2 \ 5/2^+)$	87.64	$(3/2^+)$	
841.4 ^C 6	$0.9^{\circ} 2$	1773.90	$(1/2,3/2,5/2^+)$	931.9	(1/2, 3/2, 5/2)	
843 5 5	$0.8^{@}2$	931.9	(1/2, 3/2, 5/2)	87.64	$(3/2^+)$	
862.9.6	$14^{@} 2$	929.2	(1/2,3/2,5/2) $(1/2,3/2,5/2^+)$	66.21	$(3/2^+)$	
877.9 4	0.7.3	944.31	$(1/2, 3/2, 5/2^{+})$ $(1/2^{+}, 3/2, 5/2^{+})$	66.21	$(1/2^+)$	
883.6 [°] 6	0.56° 14	971.1	$(1/2, 3/2, 5/2^+)$	87.64	$(3/2^+)$	
883.6 ^C 6	0.56° 14	1634.1	$(1/2,3/2,5/2^+)$	750.86	$(1/2, 3/2, 5/2^+)$	
883.6 ^C 6	0.56 ^c 14	1718.2	$(1/2,3/2,5/2^+)$	834.63	$(1/2^+, 3/2, 5/2^-)$	
904.6 10	0.55 [@] 14	971.1	$(1/2, 3/2, 5/2^+)$	66.21	$(1/2^+)$	
^x 910.9 6	$0.57^{@}$ 14					
939.8 7	$0.74^{@}$ 14	1773.90	$(1/2, 3/2, 5/2^+)$	834.63	$(1/2^+, 3/2, 5/2^-)$	
944.3 <i>3</i>	1.9 3	944.31	$(1/2^+, 3/2, 5/2^+)$	0.0	$(5/2^+)$	
^x 947.1 5	1.0 2					
^x 982.2 6	$0.9^{\textcircled{0}}2$					
^x 991.7 6	1.0 2					
1001.7 6	1.2 10	1773.90	$(1/2, 3/2, 5/2^+)$	772.80	$(1/2^+, 3/2)$	
$x^{1021.2}$ 5	1.9 4					
1051.4 3	1.3 3	1138.79	$(1/2, 3/2, 5/2^+)$	87.64	$(3/2^+)$	
1072.5° 6	$1.0^{\circ} 4$	1138.79	$(1/2,3/2,5/2^+)$	66.21	$(1/2^+)$	
10/2.5° 6	1.0° 4	1693.3	$(1/2^+, 3/2, 5/2^+)$	620.59	(3/2,5/2,7/2)	
^x 1079.8 ⁺ 5	1.4 5	1710.0	(1/0.2/0.5/0+)	(20.50	(210 510 710)	
1097.8 0	0.72	1/18.2	$(1/2, 3/2, 5/2^{+})$	620.59	(3/2, 5/2, 1/2)	
^x 1126.1 ⁺ 5	0.83 15					
1127.5 + 5	0.9 2	1773.90	$(1/2, 3/2, 5/2^+)$	646.6	$(1/2^{-} \text{ to } 7/2)$	
^x 1201.8 5	0.9 5					
1207.8 J	1.1.5					
$x_{1208.1.5}^{x_{1208.1.5}}$	1.2 2					
x1316.7.6	1.1.2					
x1325 8 4	094					
1376.1 6	0.9 2	1773.90	$(1/2.3/2.5/2^+)$	397.33	$(3/2^+)$	
$1408.0^{\ddagger d}$ 6	$1.0^{@}$ 2	1693.3	$(1/2^+, 3/2, 5/2^+)$	285.62	$(5/2^+)$	
x1468.6 6	2.5 6	10/010	(12,512,512)	200.02	(0,-)	
1546.4 6	1.1 4	1634.1	$(1/2, 3/2, 5/2^+)$	87.64	$(3/2^+)$	
^x 1558.3 7	0.7 3					
1567.8 6	0.8 3	1634.1	$(1/2, 3/2, 5/2^+)$	66.21	$(1/2^+)$	
^1583.1 5	5.8 5	1602.2	(1/0+2/2)(2/0+)	07 (4	$(2/2^{+})$	
1005.5 4	3.34	1093.3	$(1/2^{+}, 3/2, 3/2^{+})$	ð/.04	$(3/2^{+})$	

L

 ∞

	231					.6 s) 2001	Fr05 (continued)
					$\gamma(^{231}$	Ra) (continu	ed)
Eγ	I_{γ}^{a}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Eγ	I_{γ}^{a}	E _i (level)
^x 1609.4 4	0.7 3				^x 1828.1 5	0.6 2	
1627.2 6	1.1 3	1693.3	$(1/2^+, 3/2, 5/2^+)$	$66.21 (1/2^+)$	^x 1839.1 7	1.1 2	
1630.6 5	1.9 <i>3</i>	1718.2	$(1/2, 3/2, 5/2^+)$	87.64 (3/2+)	^x 1856.2 7	0.9 4	
1642.5 5	3.9 4	1730.1	$(1/2, 3/2, 5/2^+)$	87.64 (3/2 ⁺)	^x 1870.0 6	1.3 2	
1651.9 [‡] 6	0.5 2	1718.2	$(1/2, 3/2, 5/2^+)$	66.21 (1/2 ⁺)	^x 1876.4 6	1.8 <i>3</i>	
^x 1653.6 [‡] 6	0.7 2				^x 1965.8 5	0.6 3	
1663.8 <i>5</i>	1.6 3	1730.1	$(1/2, 3/2, 5/2^+)$	66.21 (1/2+)	^x 1973.8 [†] 8	0.4 3	
^x 1682.8 [#] 6	2.9 5				^x 1983.2 11	0.7 2	
1686.1 [‡] 5	3.8 5	1773.90	$(1/2, 3/2, 5/2^+)$	87.64 (3/2 ⁺)	^x 2000.9 7	0.5 2	
1693.7 8	1.7 5	1693.3	$(1/2^+, 3/2, 5/2^+)$	$0.0 (5/2^+)$	^x 2008.1 6	1.4 2	
^x 1703.6 7	1.5 5				x2053.4 [†] 8	0.46 14	
1707.6 7	1.0 4	1773.90	$(1/2, 3/2, 5/2^+)$	66.21 (1/2 ⁺)	^x 2114.8 8	0.49 13	
^x 1720.7 6	1.1 3				^x 2129.3 [†] 8	0.6 2	
^x 1762.3 4	1.2 3				^x 2133.5 7	0.7 3	
^x 1781.9 5	0.9 4				^x 2206.4 11	0.49 [@] 15	
^x 1785.9 6	0.6 2				^x 2289.0 8	0.35 13	
^x 1800.7 [‡] 6	0.9 2				^x 2457.9 [†] 8	0.15 5	
^x 1802.6 6	1.2 2				^x 2621.3 [†] 8	0.13 3	

9

[†] Tentatively assigned to ²³¹Ra.

[‡] Possible doublet.
[#] Possible multiplet.

[@] Contribution from impurities was removed.

& From ce data in 2001Fr05. Only the dominant multipolarity is assigned. Possible admixtures with upper limits are given under comments. The same assignments are given in the Adopted dataset.

^{*a*} For absolute intensity per 100 decays, multiply by ≈ 0.25 .

^b Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^c Multiply placed with undivided intensity.

^d Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

²³¹Fr β^- decay (17.6 s) 2001Fr05

²³¹₈₈Ra₁₄₃

²³¹Fr β^- decay (17.6 s) 2001Fr05

231 Fr β^- decay (17.6 s) 2001Fr05

