Adopted Levels, Gammas

History

Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Balraj Singh, Jagdish K. Tuli, and Edgardo Browne	NDS 185, 560 (2022)	31-Aug-2022	

 $Q(\beta^{-})=2454 \ 17; \ S(n)=4371 \ 15; \ S(p)=8559 \ 13; \ Q(\alpha)=2906 \ 18$ 2021Wa16

1985Hi02: ²³¹Fr produced in spallation reaction of ²³⁸U induced by 600 MeV protons from the CERN synchrocyclotron, followed by mass-separation using the ISOLDE II online separator. Measured $E\gamma$ and half-life of the decay of ²³¹Ra.

2001Fr05: ²³¹Fr was produced by spallation of 1 GeV proton beam on uranium targets. The activity was mass-separated at CERN ISOLDE on-line separator, deposited on a magnetic tape, and then radiations were counted at two stations.

2018Ly01: radioactive beams of Radium isotopes (A=222-233) produced by impinging 1.4-GeV protons onto a thick uranium carbide (UC_x) target at the ISOLDE-CERN facility. Radium atoms diffusing out of the target were ionized by a combination of surface ionization and multistep laser resonance ionization, using the resonance ionization laser ion source (RILIS), then accelerated to 30 keV and mass separated using the high resolution separator (HRS). Finally, the ions were cooled and bunched using the ISOLDE linear Paul trap ISOLDE cooler (ISCOOL), re-accelerated to 30 keV and directed to the Collinear Resonance Ionization Spectroscopy (CRIS) beam line. Measured high-resolution hyperfine-structure spectra of the $7s^2 \ ^1S^0 \rightarrow 7s7p^3P_1$ atomic transition in the neutron-rich radium isotopes from A=222 to 232, changes in rms charge radii, isotope shifts, static magnetic dipole and electric quadrupole moments.

Atomic mass measurements: 2012Ch19 (also 2008ChZI), 2010Li02, 2005He26.

2013Fr09 cite 1983Ah03 for discovery of the ²³¹Ra isotope, but there is no mention of this isotope in 1983Ah03. Evaluators consider 1985Hi02 as the first article reporting discovery of this isotope.

1938Ha01 listed ²³¹Ra with half-life of 25 min followed by decay of ²³¹Ac with a half-life of 40 min. But with presently known half-lives, these activities must belong to other activities.

Theoretical nuclear structure calculations: consult the NSR database (www.nndc.bnl.gov/nsr/) for five primary references, also listed in this dataset under 'document' records, which can be accessed through on-line ENSDF database at www.nndc.bnl.gov/ensdf/.

Additional information 1.

²³¹Ra Levels

Cross Reference (XREF) Flags

A 231 Fr β^{-} decay (17.6 s)

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
0.0	(5/2+)	103.9 s <i>14</i>	A	 %β⁻=100 µ=-0.3554 11 (2018Ly01,2019StZV) Q=+3.282 170 (2018Ly01) µ,Q: from hyperfine structure measurements using collinear resonance laser spectroscopy. Uncertainties in Q: 0.001 statistical and 0.170 systematic, combined in quadrature. Measured value of µ=-0.3572 8 in 2018Ly01 is re-evaluated to -0.3554 11 in 2019StZV evaluation. Spectroscopic quadrupole moment is not listed in 2021StZZ evaluation. Measured change in rms radius: δ<r<sup>2>(²¹⁴Ra,²³¹Ra)=+2.0177 fm² 2(stat) 1012(syst) (2018Ly01).</r<sup> Measured isotope shifts: δν(²¹⁴Ra,²³¹Ra)=-56534 MHz 4; δν(²²⁶Ra,²³¹Ra)=-14790 MHz 3 (2018Ly01). J^π: Nilsson orbital assignment v5/2[622] to this level is based on the energy of the v5/2[622] orbital in ²³³Th. Also on the retardation of the 66-keV E2 γ ray from the 1/2⁺, v1/2[631] state (at 66 keV) to the 5/2⁺, v5/2[622] (ground state) (2001Fr05). T_{1/2}: weighted average of 104.1 s 14 (2006Bo33,2008Bo29) and 103 s 3 (1985Hi02). Value given in 2006Bo33 is 104.1 s 8 from γ-decay curves, where the uncertainty does not include the dispersion in experimental values about the weighted average for the 17 γ rays used. 1985Hi02 followed the decay of Ac K x-rays as well as the

S(2n)=10488 19, S(2p)=15724 17 (2021Wa16).

Adopted Levels, Gammas (continued)

²³¹Ra Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
				growth of γ rays in ²³¹ Th from the decay of ²³¹ Ac.
46.23 11	$(7/2^+)$		A	J^{π} : From analogy to ²³³ Th, where the 7/2 ⁺ member of the v5/2[622] state is at 44.3 keV.
66.21 9	$(1/2^+)$	≈53 µs	Α	%IT≈100
				J^{π} : 66.2 γ E2 to (5/2 ⁺). Nilsson orbital assignment $\nu 1/2$ [631] to this level is based on the expected energy of this orbital, and on the systematics of the B(E1) ratios between γ rays from the $1/2^-$, $\nu 1/2$ [501] state to the $1/2^+$ and $3/2^+$ members of the $\nu 1/2$ [631] rotational band in several odd-A nuclei near ²³¹ Ra (2001Fr05). T _{1/2} : from 66.2 γ (t) and K _{$\alpha 2$} x-ray(t) in β^- decay. 2001Fr05 mention that the half-life is an estimate only, and has significant systematic and statistical uncertainties
87.64 13	$(3/2^+)$		Α	J^{π} : $3/2^+$ member of configuration= $\nu 1/2[631]$.
95.50 9	(5/2 ⁻)	4.72 ns 6	A	J^{π} : 49.3 γ E1 to (7/2 ⁺); 95.5 γ E1 to (5/2 ⁺). Nilsson orbital assignment $v5/2[572]$ to this level is based on the expected energy of this orbital, and on the similarity of B(E1) ratios between γ rays from the $v5/2[752]$ to the 5/2 ⁺ and 7/2 ⁺ members of the $v5/2[622]$ rotational band in ²³¹ Th and ²²⁹ Ra (2001Fr05).
				$1_{1/2}$: from $\beta\gamma(t)$ in β decay. Other: 4.55 hs 44 from $\beta\gamma\gamma(t)$ in β decay (2001 Er05)
285.62 16	(5/2+)		Α	J^{π} : 239.4 γ (M1) to (7/2 ⁺); possible 285.7 γ M1 to (5/2 ⁺). Nilsson orbital assignment ν 5/2[533] to this level is based on the expected energy of this orbital, and on the similarity of B(M1) ratios between γ rays from the
				$v5/2[633]$ to the $5/2^+$ and $7/2^+$ members of the $v5/2[622]$ rotational
				band in ²³³ Th (2001Fr05).
397.33 13	(3/2+)		A	J^{π} : 309.9 γ M1 to (3/2 ⁺); 331.2 γ M1 to (1/2 ⁺); 397.3 γ (E2(+M1)) to (5/2 ⁺). Nilsson orbital assignment ν 3/2[631] to this level is based on the expected energy of this orbital, and on the similarity of B(M1) ratios between γ rays to members of the ν 1/2[631] and ν 5/2[622] rotational bands (2001Er05)
455.0 4	$(1/2^{-}$ to $9/2^{-})$		Α	J^{π} : 359.5 γ to (5/2 ⁻).
458.95 16	$(1/2^{-}, 3/2^{-})$	≤15 ps	Α	J^{π} : M1(+E2) γ to (5/2 ⁻); possible γ to (1/2 ⁺).
				$T_{1/2}$: from $\beta \gamma \gamma(t)$ in β^- decay.
503.33 21	$(1/2, 3/2, 5/2^+)$		Α	J^{π} : 415.6 γ to (3/2 ⁺); possible 437.4 γ to (1/2 ⁺).
511.36 15	$(1/2^+, 3/2^+)$		Α	J^{π} : 445.1 γ M1(+E2) to (1/2 ⁺).
520.29 14	(1/2 ⁻)	92 ps 5	A	J^{π} : 432.6 γ E1 to (3/2 ⁺); 454.0 γ E1 to (1/2 ⁺). Nilsson orbital assignment ν 1/2[501] to this level is based on the characteristic β^- decay pattern between the ν 1/2[400] (ground state in ²³¹ Fr) and ν 1/2[501] orbitals in several odd-A nuclei near ²³¹ Ra. See also arguments for Nilsson orbital assignment to ²³¹ Fr ground state (2001Fr05).
605 4 3	(1 10- 0 10 5 10+)			$T_{1/2}$: from $\beta \gamma \gamma(t)$ in β^- decay.
605.4 3	(1/2, 3/2, 5/2)	<10.5	A	J^* : 510.3 γ to (5/2); 539.1 γ to (1/2).
620.59 24	(3/2, 5/2, 1/2)	≤ 12.5 ps	A	J [*] : 525.2 γ to (5/2); possible 620.2 γ to (5/2).
646.6.4	$(1/2^{-}$ to $7/2)$		۵	$I_{1/2}^{\pi}$. from $p \gamma(t) = p^{-1} dccay$. I^{π} : 551 3 α to $(5/2^{-})$: 1127 5 α from $(1/2) 3/2) 5/2^{+}$.
740.72 18	$(3/2^+, 5/2^+)$		A	J^{π} : 674.6 γ to (1/2 ⁺); 645.2 γ to (5/2 ⁻); 740.5 γ to (5/2 ⁺); possible 694.4 γ to (7/2 ⁺)
750.86 18	$(1/2,3/2.5/2^+)$		A	J^{π} : 663.1 γ to (3/2 ⁺); possible 684.6 γ to (1/2 ⁺).
760.5 4	$(1/2,3/2,5/2^+)$		A	J^{π} : 672.8 γ to (3/2 ⁺); possible 694.4 γ to (1/2 ⁺).
772.80 15	$(1/2^+, 3/2)$		Α	J^{π} : 252.5 γ to $(1/2^{-})$; 706.5 γ to $(1/2^{+})$; 772.8 γ to $(5/2^{+})$.
796.2 <i>3</i>	$(1/2, 3/2, 5/2^+)$		Α	J^{π} : 730.0 γ to (1/2 ⁺); 708.6 γ to (3/2 ⁺).
834.63 18	$(1/2^+, 3/2, 5/2^-)$		Α	J^{π} : 314.4 γ to (1/2 ⁻); 834.5 γ to (5/2 ⁺).
929.2 4	$(1/2, 3/2, 5/2^+)$		Α	J^{π} : 862.9 γ to (1/2 ⁺).
931.9 <i>3</i>	(1/2,3/2,5/2)		Α	J^{π} : 472.8 γ to (1/2 ⁻ ,3/2 ⁻); 843.5 γ to (3/2 ⁺).
944.31 22	$(1/2^+, 3/2, 5/2^+)$		Α	J [*] : $87/.9\gamma$ to $(1/2^+)$; 944.3 γ to $(5/2^+)$.

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

²³¹Ra Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
971.1 6 1138.79 24 1634.1 4 1693.3 3 1718.2 3 1730.1 4	$(1/2,3/2,5/2^+) (1/2,3/2,5/2^+) (1/2,3/2,5/2^+) (1/2^+,3/2,5/2^+) (1/2,3/2) (1/2,3/2,5/2^+) (1/2,3/2) (1/2,3/2) (1/2,3/2) (1/2,3/2) (1/2,3/2) (1/2,3/2) (1/2,3/2) (1/2,3/2) (1/2,3/2) (1/2,3/2) (1/2,3/2) (1/2,3/2) (1/2,3/2) (1/2,3/2) (1/2,3/2) (1/2,3/2) (1/2,3/2) (1/2,3/2) (1/2,3/2) (1/$	A A A A A	J^{π} : 904.6 γ to (1/2 ⁺). J^{π} : 1051.4 γ to (3/2 ⁺); possible 1072.5 γ to (1/2 ⁺). J^{π} : 1567.8 γ to (1/2 ⁺); 1546.4 γ to (3/2 ⁺). J^{π} : 1627.2 γ to (1/2 ⁺); 1693.7 γ to (5/2 ⁺). J^{π} : 1651.9 γ to (1/2 ⁺); 1630.6 γ to (3/2 ⁺). J^{π} : 1663.8 γ to (1/2 ⁺); 1642.5 γ to (3/2 ⁺).
1773.90 25	$(1/2, 3/2, 5/2^+)$	Α	J^{π} : 1707.6 γ to (1/2 ⁺); 1686.1 γ to (3/2 ⁺).

[†] From ²³¹Fr β^- decay.

3

					Adopted L	evels, Gamma	s (continued))	
						γ ⁽²³¹ Ra)			
E _i (level)	\mathbf{J}^{π}_{i}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult. [†]	δ^{\dagger}	α &	Comments
46.23	$(7/2^+)$	46.3 ^b 2	100	0.0	$(5/2^+)$	[M1]		29.5 6	
66.21	(1/2+)	66.2 1	100	0.0	(5/2+)	E2		67.4 10	B(E2)(W.u.)≈0.0015 δ (E2/M1)>2 or 12.9 <i>12</i> ; ΔJ^{π} consistent with pure E2
87.64	$(3/2^+)$	(21.4)		66.21	$(1/2^+)$	[M1]		286 4	E_{γ} : γ ray was not observed. I γ given in 231 Fr β^- decay is an upper limit.
95.50	(5/2-)	49.3 1	5.1 3	46.23	$(7/2^+)$	E1		0.727 10	$B(E1)(W.u.)=1.34\times10^{-5}$ 13
		95.5 <i>1</i>	100 7	0.0	$(5/2^+)$	E1		0.1247 18	$B(E1)(W.u.)=3.60\times10^{-5} 6$
285.62	$(5/2^+)$	239.4 ^a 3	<19 ^{<i>a</i>}	46.23	$(7/2^+)$	(M1)		1.324 19	$\delta(\text{E2/M1}) < 0.45$ for a doubly placed γ ray.
		285.7 <mark>b</mark> 2	100 9	0.0	$(5/2^+)$	M1		0.811 12	$\delta(E2/M1) < 0.4.$
397.33	$(3/2^+)$	309.9 2	100 10	87.64	$(3/2^+)$	M1		0.648 9	$\delta(E2/M1) < 0.35.$
		331.2 2	88 12	66.21	$(1/2^+)$	M1		0.540 8	$\delta(E2/M1) < 0.55.$
		397.3 <i>3</i>	37 4	0.0	$(5/2^+)$	(E2(+M1))	>0.7	0.24 18	
455.0	$(1/2^{-} \text{ to } 9/2^{-})$	359.5 3	100	95.50	$(5/2^{-})$				
458.95	$(1/2^-, 3/2^-)$	363.4 2	100 10	95.50	$(5/2^{-})$	M1(+E2)	0.77	0.31 11	
		392.8 ^{#0} 3	26 10	66.21	$(1/2^+)$				
503.33	$(1/2,3/2,5/2^+)$	415.6 3	100 12	87.64	$(3/2^+)$				
		437.44 3	<43 ⁴⁴	66.21	$(1/2^+)$				
511.36	$(1/2^+, 3/2^+)$	423.8 ⁺⁰ 2	18 5	87.64	$(3/2^+)$				
		445.1 2	100 10	66.21	$(1/2^+)$	M1+E2	0.45 30	0.21 4	6
520.29	$(1/2^{-})$	123.1 2	0.70 10	397.33	$(3/2^+)$	E1		0.291 4	$B(E1)(W.u.)=4.1\times10^{-6}6$
		432.6 2	100 5	87.64	$(3/2^+)$	E1		0.01588 22	$B(E1)(W.u.)=1.33\times10^{-5}$ 9
		454.0 2	78 5	66.21	$(1/2^+)$	E1		0.01437 20	$B(E1)(W.u.)=9.0\times10^{-6} 6$
605.4	$(1/2^-, 3/2, 5/2^+)$	510.3 5	33 7	95.50	$(5/2^{-})$				
(20.50	(2 0 5 0 7 0)	539.1 3	100 21	66.21	$(1/2^+)$				
020.39	(3/2, 3/2, 7/2)	525.25	100 10	95.50	(5/2)				
CAC C	(1/0 - (-7/0))	620.2° 5	16.5 22	0.0	(5/2 ⁺)				
040.0 740.72	(1/2 to 1/2) (2/2+5/2+)	551.54 645.2.2	100	95.50	(5/2)				
740.72	(3/2 ,3/2)	653 2 3	33 17	95.50 87.64	$(3/2^+)$				
		033.25	100 10	67.04	(3/2)				
		6/4.6" 3	100 10	46.22	$(1/2^+)$				
		740 5 5	<43 17.5	40.25	(1/2) $(5/2^+)$				
750 06	$(1/2) 2/2 5/2^{+})$	220 Aab 2	-19 <mark>0</mark>	511.26	(3/2)	(1)			S(E2/M1) < 0.45 for a doubly placed a ray
150.00	(1/2,3/2,3/2)	259.4 5	13.5	307 33	$(1/2, 3/2^{+})$	(1411)			$\sigma(12/1017<0.45$ for a doubly placed γ ray.
		663.1.3	100 10	87 64	$(3/2^+)$				
		$684.6^{a}.5$	<45 ^{<i>a</i>}	66.21	$(1/2^+)$				
760 5	$(1/2 \ 3/2 \ 5/2^+)$	672 8 [#] 5	100.24	87.64	$(3/2^+)$				
/ · · · /	(1/2, 3/2, 3/2)	012.0 5	100 24	07.04	(J/2)				
100.0		694 4 ⁴ 1	$< 164^{\circ}$	66 21	$(1/2^{+})$				

4

From ENSDF

 $^{231}_{88}$ Ra $_{143}$ -4

 $^{231}_{88}{\rm Ra}_{143}\text{-}4$

I

$\gamma(^{231}\text{Ra})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π
772.80	$(1/2^+, 3/2)$	261.6 3	29 6	511.36	$(1/2^+, 3/2^+)$
		375.7 ^a 3	<40 ^a	397.33	$(3/2^+)$
		684.6 ^{<i>a</i>} 5	<135 ⁴	87.64	$(3/2^+)$
		706.5 [@] 5	100 10	66.21	$(1/2^+)$
		772.8 [#] 3	90 10	0.0	$(5/2^+)$
796.2	$(1/2, 3/2, 5/2^+)$	708.6 [@] 5	42 6	87.64	$(3/2^+)$
		730.0 [#] 3	100 19	66.21	$(1/2^+)$
834.63	$(1/2^+, 3/2, 5/2^-)$	314.4 <i>3</i>	24 8	520.29	$(1/2^{-})$
		375.7 <mark>a</mark> 3	<40 ^{<i>a</i>}	458.95	$(1/2^-, 3/2^-)$
		437.4 ^a 3	<56 ^a	397.33	$(3/2^+)$
		746.9 4	100 20	87.64	$(3/2^+)$
		834.5 6	65 10	0.0	$(5/2^+)$
929.2	$(1/2,3/2,5/2^+)$	841.4 ⁴ 6	<64"	87.64	$(3/2^+)$
		862.9 0	100 14	66.21	$(1/2^{+})$
931.9	(1/2, 3/2, 5/2)	428.8 ⁺⁰ 3	42 17	503.33	$(1/2,3/2,5/2^+)$
		472.8 5	100 25	458.95	(1/2 ,3/2)
		843.5 [#] 5	67 17	87.64	$(3/2^+)$
944.31	$(1/2^+, 3/2, 5/2^+)$	659.0 ⁰ 5	53 11	285.62	$(5/2^+)$
		877.9 4	37 16	66.21	$(1/2^+)$
		944.3 3	100 16	0.0	$(5/2^+)$
9/1.1	$(1/2,3/2,5/2^+)$	883.64 6	<102	87.64	$(3/2^+)$
1120 70	$(1/2) 2/2 5/2^{+})$	904.6 10	100 25	00.21 750.96	$(1/2^{+})$ $(1/2,2/2,5/2^{+})$
1156.79	(1/2,3/2,3/2)	507.75 1051 4 3	42.9	730.80 87.64	(1/2, 3/2, 3/2)
		1031.43	$^{100}23$	66 21	$(3/2^+)$
1624 1	$(1/2) 2/2 5/2^{+})$	704 8@ 5	100 12	020.21	(1/2) (1/2 2/2 5/2 ⁺)
1034.1	(1/2,3/2,3/2)	883.6 ⁴ .6	100 15 270	929.2 750.86	(1/2, 3/2, 3/2) $(1/2, 3/2, 5/2^+)$
		1546.4.6	73 27	87.64	(1/2, 3/2, 3/2)
		1567.8 6	53 20	66.21	$(1/2^+)$
1693.3	$(1/2^+, 3/2, 5/2^+)$	1072.5 ^{<i>a</i>} 6	<30 ^{<i>a</i>}	620.59	(3/2,5/2,7/2)
		1408.0 ^{#b} 6	30 6	285.62	$(5/2^+)$
		1605.5 4	100 12	87.64	$(3/2^+)$
		1627.2 6	33 9	66.21	$(1/2^+)$
		1693.7 8	52 15	0.0	$(5/2^+)$
1718.2	$(1/2, 3/2, 5/2^+)$	883.6 ^{<i>a</i>} 6	<29 ^{<i>a</i>}	834.63	$(1/2^+, 3/2, 5/2^-)$
		1097.8 6	37 11	620.59	(3/2, 5/2, 7/2)
		1630.6 5	100 16	87.64	$(3/2^{+})$
		1651.9# 6	26 11	66.21	$(1/2^+)$
1730.1	$(1/2, 3/2, 5/2^+)$	1642.5 5	100 10	87.64	$(3/2^+)$
		1663.8 5	41 8	66.21	$(1/2^{+})$

S

γ (²³¹Ra) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	\mathbf{E}_{f}	J_f^π	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
1773.90	(1/2,3/2,5/2+)	841.4 ^{<i>a</i>} 6	<24 ^{<i>a</i>}	931.9	(1/2,3/2,5/2)	1773.90	$(1/2, 3/2, 5/2^+)$	1376.1 6	24 5	397.33	$(3/2^+)$
		939.8 7	19 4	834.63	$(1/2^+, 3/2, 5/2^-)$			1686.1 [#] 5	100 13	87.64	$(3/2^+)$
		1001.7 6	32 26	772.80	$(1/2^+, 3/2)$			1707.6 7	26 11	66.21	$(1/2^+)$
		1127.5 [#] 5	24 5	646.6	$(1/2^{-}$ to $7/2)$						

[†] From ²³¹Fr β^- decay (2001Fr05). [‡] Tentatively assigned to ²³¹Ra.

[#] Possible doublet.
[@] Possible multiplet.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*a*} Multiply placed with undivided intensity.

^b Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

²³¹₈₈Ra₁₄₃

²³¹₈₈Ra₁₄₃