²³¹U ε decay (4.2 d) 1994Br36,1996Le01

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, Jagdish K. Tuli, and Edgardo Browne	NDS 185, 560 (2022)	31-Aug-2022

Parent: ²³¹U: E=0.0; $J^{\pi}=(5/2^{-})$; $T_{1/2}=4.2$ d *1*; $Q(\varepsilon)=381.6$ 20; $\%\varepsilon$ decay=100.0

 231 U-J^{π},T_{1/2}: From 231 U Adopted Levels.

²³¹U-Q(ε): From 2021Wa16.

²³¹U-% ε decay: % ε ≈100 for ²³¹U ε decay.

1994Br36: ²³¹U activity was produced via the electron capture decay of ²³¹Np, which was formed in the ²³³U(p,3n) reaction with 49-MeV protons. The recoiling reaction products of ²³¹Np were chemically separated from their ²³¹U daughter nuclei. Measured E γ , I γ , E(ce), I(ce), $\gamma\gamma$ -coin using HPGe detector for γ rays, pin diode for conversion electrons. Main contaminants were ²³⁷U and ^{117m}Sn. Deduced conversion coefficients, γ -ray multipolarities.

1996Le01: ²³¹U activity produced by ²³²Th(α ,5n), E=52 MeV and mass separated. Measured E γ , I γ using HPGe detector. Main contaminant was ²³¹Th, produced in ²³²Th(α , α' n) reaction.

1961Ho29, 1957Ho07: data from private communications from J.M. Hollander listed in 1978LeZA (Table of Isotopes).

Evaluators' note: the decay scheme seems fairly complete, except for lack of spectral information for 9.18 and 77.69-keV γ transitions.

²³¹Pa Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0.0	3/2-	32570 y <i>130</i>	
9.186 20	$1/2^{-}$	-	
58.570 <i>3</i>	$7/2^{-}$	274 ps 10	
77.69 4	$5/2^{-}$	-	
84.2150 20	$5/2^{+}$	45.1 ns 13	
101.409 4	$7/2^{+}$	0.7 ns 2	$T_{1/2}$: combined for 101.4+102.3 levels (1975Ho14, ²³¹ Th β^- decay).
102.2687 22	$3/2^{+}$	0.7 ns 2	$T_{1/2}$: combined for 101.4+102.3 levels (1975Ho14, ²³¹ Th β^- decay).
174.160 5	$(5/2^{-})$		
183.496 <i>3</i>	$5/2^{+}$	≤0.19 ns	
273.719 16	$(1/2^+)$		
317.94 5	$(3/2^+)$	0.07 ns +11-3	
320.207 22	3/2-		

[†] Deduced from least-squares fit to $E\gamma$ values.

[‡] From the Adopted Levels.

ε radiations

E(decay)	E(level)	Ιε [†]	Log ft	Comments
(61.4 20)	320.207	0.53 10	6.3 1	εL=0.603 7; εM+=0.397 7
(63.7 20)	317.94	0.0028 <i>3</i>	8.6 1	εL=0.610 7; εM+=0.390 7
(107.9 20)	273.719	0.13 3	7.5 ¹ <i>u</i> 1	εL=0.6777 16; εM+=0.3223 16
(198.1 20)	183.496	0.14 7	8.4 2	εK=0.460 7; εL=0.384 5; εM+=0.1554 20
(207.4 20)	174.160	0.06 3	8.8 2	εK=0.487 6; εL=0.366 4; εM+=0.1469 18
(279.3 20)	102.2687	59 <i>23</i>	6.2 2	εK=0.6073 21; εL=0.2837 15; εM+=0.1089 7
(297.4 20)	84.2150	44 23	6.4 2	εK=0.6245 18; εL=0.2719 12; εM+=0.1036 6
(303.9 20)	77.69	0.52 8	8.4 1	εK=0.6300 17; εL=0.2681 12; εM+=0.1019 5

[†] Absolute intensity per 100 decays.

 $\gamma(^{231}\text{Pa})$

Iγ normalization: From a relative K x ray intensity of 780 28 (1994Br36), a theoretical εK/ε=0.59 (1977Ba48), and a K-fluorescence yield of 0.970 4
(1996Sc06) the total number of atomic vacancies produced by the electron capture process and the Iy normalization factor become 1362 66 and 0.073 4,
respectively. The total number of atomic vacancies also agrees with the total relative γ -ray transition intensity (photons plus electrons) of 1350 70 to the ground
and 9.2-keV levels. This result is consistent with the absence of any appreciable electron-capture decays to these levels.
Measured energies and intensities of Pa x-rays relative to 100 for the 84.21-keV γ ray from ²³¹ U ε decay (1994Br36):
Pa K _{$\alpha 2$} : 92.3 keV <i>1</i> , relative intensity=238 <i>14</i> (1994Br36).
Pa $K_{\alpha 1}$: 95.8 keV <i>1</i> , relative intensity=382 22 (1994Br36).
Pa K _{β3} : 107.5 keV 2, relative intensity=34.6 28 (1994Br36).
Pa $K_{\beta 1}$: 108.3 keV 2, relative intensity=78 6 (1994Br36).

Pa K_{$\beta 2$}: 111.4 keV 2, relative intensity=37.6 26 (1994Br36).

Pa O₂₃: 112.2 keV 2, relative intensity=9.2 12 (1994Br36).

 \mathbf{N}

Experimental Pa K x ray intensities: 17.5% 10 (K α_2 x ray), 28.1% 16 (K α_1 x ray), and 11.8% 6 (K β x ray) compare with 17.85% 8 (K α_2 x ray), 28.73% 12 (K β x ray), respectively, calculated by evaluators (using the computer program RADLST) from γ -ray intensities, K-conversion coefficients and K-electron capture probabilities presented here, using a K-fluorescence yield of 0.970 4 (1996Sc06). This agreement shows that most γ rays with energies greater than 112.6 keV (the K-binding in Pa) have accurate intensities and correct multipolarities, and that K-electron capture probabilities are also correct.

 $Q(\beta^-)=381.6 \text{ keV } 20 \text{ (2021Wa16)}$ compares with a total average radiation energy of 350 keV, calculated by evaluators using the computer program RADLST. The small discrepancy between these values is probably due to low-energy γ rays (i.e., 9.2-, 17.2-, and 19.1-keV transitions) not included in the calculation because their intensities are unknown. These results support the consistency and completeness of the decay scheme.

E_{γ}^{\dagger}	I_{γ} [‡] <i>b</i>	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^a	δ^{a}	α^{c}	$I_{(\gamma+ce)}^{b}$	Comments
(9.183)		9.186	1/2-	0.0	3/2-				8.8 3	E_{γ} : from the Adopted Gammas. $I_{(\gamma+ce)}$: from transition intensity balance at 9.19 level, assuming no direct ε feeding to the 9.19 level, as expected from $\Delta J^{\pi} = (2), \Delta \pi = (no).$
(17.195 21)	≤0.014	101.409	7/2+	84.2150	5/2+	(M1)		166 <i>3</i>	≤2.3	
(18.055 18)	3.6 ^{&} 13	102.2687	3/2+	84.2150	5/2+	M1+E2	0.040 +18-0	218 28		%I γ =0.26 <i>10</i> α (L)=45 <i>15</i> ; α (M)=128 8 α (N)=34 2; α (O)=8.1 4; α (P)=1.55 5; α (Q)=0.124 <i>1</i>
25.65 2	200 [@] 12	84.2150	5/2+	58.570 ´	7/2-	E1		4.37 6		%Iy=14.6 <i>12</i> M1/M3=0.38; M2/M3=0.61; M4/M3=0.38; M5/M3=0.38 (1961Ho29)

				2	231 U ε decay (4.2 d)		1994B	r36,1996Le0	1 (continued)
						$\gamma(^2$	²³¹ Pa) (co	ntinued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger b}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. ^a	δ^{a}	α^{c}	Comments
58.5700 24	6.8 [@] 4	58.570	7/2-	0.0	3/2-	E2		155.5 22	$\begin{array}{l} \alpha(L)=3.25 \ 5; \ \alpha(M)=0.842 \ 13 \\ \alpha(N)=0.219 \ 4; \ \alpha(O)=0.0471 \ 7; \ \alpha(P)=0.00673 \ 10; \ \alpha(Q)=0.000196 \\ 3 \\ E_{\gamma}: \ other: \ 25.65 \ 4 \ (1994Br36). \\ \%I\gamma=0.50 \ 4 \\ \alpha(L1)\exp+\alpha(L2)\exp=64 \ 8; \ \alpha(L3)\exp=49 \ 6; \ \alpha(M)\exp=36 \ 5; \\ \alpha(N)\exp=10 \ 2 \ (1994Br36) \\ \alpha(L)=113.6 \ 16; \ \alpha(M)=31.3 \ 5 \\ \alpha(N)=8.43 \ 12; \ \alpha(O)=1.90 \ 3; \ \alpha(P)=0.306 \ 5; \ \alpha(Q)=0.000818 \ 12 \\ E_{\gamma}: \ other: \ 58.55 \ 4 \ (1994Br36). \\ I_{\gamma}: \ 6.4 \ 4 \ in \ 1994Br36 \ is \ adjusted \ by \ evaluators \ to \ 6.8 \ 4 \ to \ obtain \ transition \ intensity \ balance \ at \ 58.57 \ level, \ with \ no \ direct \ \varepsilon \end{array}$
68.5 <i>I</i>	0.079	77.69	5/2-	9.186	1/2-	E2		73.3 10	feeding to this level. Ice(L1+L2)=205 21, Ice(L3)=156 16, Ice(M)=116 12, Ice(N)=31 3 (1994Br36). Other: 1961Ho29. Additional information 1. %I γ =0.00577 α (L)=53.5 8; α (M)=14.76 21 α (N)=3.98 6; α (O)=0.898 13; α (P)=0.1448 21; α (Q)=0.000423 6 Additional information 2. I $_{\gamma}$: from 1961Ho29, cited by 1994Br36, where I γ is deduced from relative conversion electron intensity and α (theory) for E2.
(72.7510 29)	0.15 ^{&} 8	174.160	(5/2 ⁻)	101.409	7/2+	[E1]		0.280 4	%I γ =0.011 6 α (L)=0.211 3; α (M)=0.0517 8 α (N)=0.01363 20; α (O)=0.00310 5; α (P)=0.000519 8;
(77.69)	0.057	77.69	5/2-	0.0	3/2-	[M1+E2]		24 16	$\alpha(Q) = 2.33 \times 10^{-5} 4$ %Iy=0.00416 $\alpha(L) = 18 \ I2; \ \alpha(M) = 5 \ 4$ $\alpha(N) = 13 \ 9; \ \alpha(Q) = 0 \ 30 \ 20; \ \alpha(P) = 0 \ 05 \ 3; \ \alpha(Q) = 0 \ 0009 \ 7$
81.2280 <i>21</i>	≤0.32	183.496	5/2+	102.2687	3/2+	M1(+E2)	0.00 8	7.66 20	$ \begin{array}{l} \text{E}_{\gamma}: \text{ from level-energy difference.} \\ \% I\gamma \leq 0.0234 \\ \alpha(L) = 5.78 \ 14; \ \alpha(M) = 1.40 \ 4 \\ \alpha(N) = 0.374 \ 11; \ \alpha(O) = 0.0898 \ 24; \ \alpha(P) = 0.0172 \ 4; \ \alpha(Q) = 0.001422 \\ \end{array} $
82.0870 22	≤0.26	183.496	5/2+	101.409	7/2+	M1(+E2)	0.04 6	7.47 23	²² I _{γ} : from 1996Le01. Other: I γ =0.19, Ice(L1)=0.51 (1961Ho29, cited by 1994Br36). %I $\gamma \le 0.019$ α (L)=5.63 <i>17</i> ; α (M)=1.36 5 α (N)=0.365 <i>12</i> ; α (O)=0.088 <i>3</i> ; α (P)=0.0167 5; α (Q)=0.001377 22 I $_{\gamma}$: from 1996Le01. Other: I γ =0.26, Ice(L1)=0.73 (1961Ho29, cited by 1994Br36).

ω

L

1	$\frac{231}{\varepsilon} \operatorname{decay} (4.2 \mathrm{d}) \qquad 1$							996Le01 (coi	ntinued)		
γ ⁽²³¹ Pa) (continued)											
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger b}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. ^a	δ ^a	α ^C	Comments		
84.2140 22	100 [@] 6	84.2150	5/2+	0.0	3/2-	E1		2.17 21	% Iγ=7.3 6 α (L1)exp+ α (L2)exp=1.7 <i>I</i> ; α (M)exp=0.48 <i>4</i> ; α (N)exp=0.34 <i>3</i> (1994Br36) α (M1)exp=0.34; α (M2)exp=0.21; α (M3)exp=0.009; α (N1)exp=0.17 (1961Ho29) E _γ : other: 84.23 7 (1994Br36). Ice(L1+L2)=83 <i>I</i> , Ice(M)=24 <i>I</i> , Ice(N)=17 <i>I</i> (1994Br36). Other: 1961Ho29. Additional information 3. Total conversion coefficient from ce data in ²³¹ Th β^- decay. Other: 2.6 <i>I</i> from summed conversion coefficients in 1994Br36. Transition is anomalously converted (1960As02). See also 2008Go10.		
89.95 2	0.58 [#] 32	174.160	(5/2-)	84.2150	5/2+	(E1)		0.1598 23	α (O1)exp=0.031 (1961Ho29). %I γ =0.042 23 α (L)=0.1205 17; α (M)=0.0294 5 α (N)=0.00777 11; α (O)=0.001782 25; α (P)=0.000304 5; α (O)=1.467×10 ⁻⁵ 21		
(93.02 4)	1.8 ^{&} 2	102.2687	3/2+	9.186	1/2-	(E1)		0.1463 <i>21</i>	% Iy=0.131 16 α (L)=0.1103 16; α (M)=0.0269 4 α (N)=0.00711 10; α (O)=0.001633 23; α (P)=0.000279 4; α (Q)=1.363×10 ⁻⁵ 20		
(99.2780 36)	≤0.050 ^{&}	183.496	5/2+	84.2150	5/2+	M1+E2	0.35 7	5.2 4	%Iγ≤0.00365 α (L)=3.9 3; α (M)=0.97 8 α (N)=0.261 20; α (O)=0.062 5; α (P)=0.0113 7; α (Q)=0.00072 3		
102.2700 24	17.2 [@] 10	102.2687	3/2+	0.0	3/2-	(E1)		0.1141 <i>16</i>	%I _γ =1.26 10 α (L)=0.0860 13; α (M)=0.0209 3 α (N)=0.00554 8; α (O)=0.001275 19; α (P)=0.000220 4; α (Q)=1.106×10 ⁻⁵ 16 E _γ : other: 102.3 1 (1994Br36).		
136.75 7	0.57 [#] 5	320.207	3/2-	183.496	5/2+	[E1]		0.237 3	%Iγ=0.042 4 α (K)=0.184 3; α (L)=0.0404 6; α (M)=0.00981 14 α (N)=0.00260 4; α (O)=0.000603 9; α (P)=0.0001061 15; α (Q)=5.83×10 ⁻⁶ 9		
171.43 [#] 3	0.200 [#] 16	273.719	(1/2 ⁺)	102.2687	3/2+	[M1+E2]		2.8 16	%I γ =0.0146 <i>14</i> α (K)=1.8 <i>17</i> ; α (L)=0.72 <i>6</i> ; α (M)=0.19 <i>3</i> α (N)=0.051 <i>7</i> ; α (O)=0.0118 <i>14</i> ; α (P)=0.00207 <i>8</i> ; α (Q)=9.E–5 <i>8</i>		
(189.5)	≤0.0053 [#]	273.719	(1/2 ⁺)	84.2150	5/2+				$%I\gamma \le 0.00039$ E _{γ} : from level-energy difference.		

4

 $^{231}_{91}\mathrm{Pa}_{140}$ -4

				231	Uεde	cay (4.2 d)	1994B	r36,1996Le01	1 (continued)			
	γ ⁽²³¹ Pa) (continued)											
${\rm E_{\gamma}}^{\dagger}$	I_{γ} [‡] <i>b</i>	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. ^a	δ^{a}	α^{c}	Comments			
(196.0)	≤0.0053 [#]	273.719	$(1/2^+)$	77.69	5/2-				% $I_{\gamma} \le 0.00039$ γ to $5/2^-$ is unlikely.			
217.94 3	4.1 11	320.207	3/2-	102.2687	3/2+	[E1]		0.0789 <i>11</i>	E _γ : from level-energy difference. %Iγ=0.30 8 α (K)=0.0624 9; α (L)=0.01249 18; α (M)=0.00301 5 α (N)=0.000801 12; α (O)=0.000188 3; α (P)=3.39×10 ⁻⁵ 5; α (Q)=2.10×10 ⁻⁶ 3 E _γ : other: 217.9 2 (1994Br36). Energy is from 1994Br36. Iγ is a unweighted average of			
236.04 6	1.22 [#] 6	320.207	3/2-	84.2150	5/2+	[E1]		0.0657 9	discrepant values: 5.26 3 (1996Le01) and 3.0 4 (1994Br36). %I γ =0.089 7 α (K)=0.0521 8; α (L)=0.01028 15; α (M)=0.00248 4 α (N)=0.000659 10; α (O)=0.0001545 22; α (P)=2.80×10 ⁻⁵ 4; α (Q)=1.770×10 ⁻⁶ 25			
240.27 5	0.0132 [#] 16	317.94	(3/2+)	77.69	5/2-	[E1]		0.0630 9	% Iy=0.00096 13 $\alpha(K)=0.0500 7; \alpha(L)=0.00984 14; \alpha(M)=0.00237 4$ $\alpha(N)=0.000631 9; \alpha(O)=0.0001480 21; \alpha(P)=2.68\times10^{-5} 4;$ $\alpha(Q)=1.703\times10^{-6} 24$ E _v : other: 240.3 2 (1996Le01).			
242.51 4	0.111 [#] 11	320.207	3/2-	77.69	5/2-	[M1+E2]		1.01 66	%Iγ=0.0081 9 α (K)=0.72 61; α (L)=0.22 4; α (M)=0.055 7 α (N)=0.0147 17; α (O)=0.0035 5; α (P)=0.00062 13; α (Q)=3.5×10 ⁻⁵ 28			
264.55 [#] 2	0.279 [#] 26	273.719	(1/2 ⁺)	9.186	1/2-	[E1]		0.0506 7	%I γ =0.0204 22 α (K)=0.0403 6; α (L)=0.00781 11; α (M)=0.00188 3 α (N)=0.000500 7; α (O)=0.0001176 17; α (P)=2.14×10 ⁻⁵ 3; α (Q)=1.389×10 ⁻⁶ 20			
273.71 [#] 2	0.621 [#] 32	273.719	(1/2 ⁺)	0.0	3/2-	[E1]		0.0469 7	%Iγ=0.0453 34 α (K)=0.0373 6; α (L)=0.00721 10; α (M)=0.001735 25 α (N)=0.000461 7; α (O)=0.0001085 16; α (P)=1.98×10 ⁻⁵ 3; α (O)=1.292×10 ⁻⁶ 18			
308.78 7	0.0195 [#] 21	317.94	(3/2+)	9.186	1/2-	[E1]		0.0358 5	%Iγ=0.00142 17 α (K)=0.0287 4; α (L)=0.00544 8; α (M)=0.001307 19 α (N)=0.000348 5; α (O)=8.19×10 ⁻⁵ 12; α (P)=1.501×10 ⁻⁵ 22; α (Q)=1.006×10 ⁻⁶ 15 E _v : other: 308.7 2 (1996Le01).			
311.00 5	0.37 [#] 5	320.207	3/2-	9.186	1/2-	M1(+E2)	0.7 9	0.61 27	% $I\gamma=0.027 \ 4$ $\alpha(K)=0.47 \ 24; \ \alpha(L)=0.107 \ 24; \ \alpha(M)=0.026 \ 5$ $\alpha(N)=0.0071 \ 14; \ \alpha(O)=0.0017 \ 4; \ \alpha(P)=0.00031 \ 8;$ $\alpha(Q)=2.2\times10^{-5} \ 11$			

S

From ENSDF

 $^{231}_{91}\mathrm{Pa}_{140}$ -5

L

				-	²³¹ U ε decay	(4.2 d) 1	994Br36,1996Le01 (continued)
						γ ⁽²³¹ Pa	a) (continued)
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger b}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. ^a	α^{c}	Comments
317.87 8	0.0042 [#] 16	317.94	(3/2+)	0.0 3/2-	[E1]	0.0336 5	%I γ =0.00031 12 $\alpha(K)$ =0.0269 4; $\alpha(L)$ =0.00509 8; $\alpha(M)$ =0.001223 18 $\alpha(N)$ =0.000325 5; $\alpha(O)$ =7.67×10 ⁻⁵ 11; $\alpha(P)$ =1.406×10 ⁻⁵ 20; $\alpha(Q)$ =9.48×10 ⁻⁷ 14 E _Y : other: 317.7 3 (1996Le01).
320.15 8	0.0158 16	320.207	3/2-	0.0 3/2-	[M1+E2]	0.46 <i>32</i>	$\%_{I\gamma=0.00115\ I3}$ $\alpha(K)=0.34\ 28;\ \alpha(L)=0.088\ 29;\ \alpha(M)=0.0221\ 61$ $\alpha(N)=0.0059\ 17;\ \alpha(O)=0.00140\ 41;\ \alpha(P)=2.57\times10^{-4}\ 89;\ \alpha(Q)=1.6\times10^{-5}\ 13$

[†] From the Adopted Gammas, which are mostly from ²³¹Th β^- decay, unless otherwise indicated.

[‡] Relative intensities listed in 1994Br36 and 1996Le01 are normalized to 100 for the 84.21-keV γ ray from a level of this energy.

[#] From 1996Le01. [@] From 1994Br36. [&] Deduced from the γ -branching ratios in Adopted Gammas, which are mostly from ²³¹Th β^- decay.

^a From the Adopted Gammas, unless otherwise stated.
^b For absolute intensity per 100 decays, multiply by 0.073 4.

^c Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

