	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, Jagdish K. Tuli, and Edgardo Browne	NDS 185, 560 (2022)	31-Aug-2022

2003Wu03 (also 1999Wu05, 1996Le01, 1992De51): (58 Ni, 58 Ni' γ), E=255, 260, 261 MeV; and (32 S, 32 S' γ),E=148 MeV. Measured E γ , I γ , $\gamma\gamma$ -coin, (particle) γ -coin using 20 Compton-suppressed Ge detectors of the NORDBALL array, a PSD-silicon detector and a 110 PIN-diode particle-detector system in conjunction with a segmented mosaic detector. GOSIA least-squares fitting code was used for the analysis of γ -ray intensities and gamma-ray branching ratios to obtain reduced matrix elements. The authors also reanalyzed their (p,2n γ) data as presented in 1996Le01, and some revisions were proposed in Table 2 of 2003Wu03.

1996Le01 (same group as 2003Wu03): 231 Pa(32 S, 32 S' γ),E=148 MeV. Measured E γ , I γ , $\gamma\gamma$ -coin, (particle) γ -coin. Following γ rays were not reported in their later paper 2003Wu03: 209.8 *3*, I γ =1.1 *3* placed from a 927 level; 255.7 *2* (I γ =2.0 *3*); 343.2 *4*, I γ =0.6 *2*; 346.3 *3*, I γ =1.0 *3*.

1992De51 (same group as 2003Wu03, 1996Le01): (α, α') , E=16,17 MeV; $({}^{32}S, {}^{32}S'\gamma)$, E=140 MeV. Measured scattered α particles using Q3D magnetic spectrograph for (α, α') , and E γ , I γ , $\gamma\gamma$ -coin, (particle) γ -coin for $({}^{32}S, {}^{32}S'\gamma)$. A total of 22 γ rays reported from ${}^{32}S$ Coulomb excitation, out of which 11 were placed in 1/2[530] band up to 23/2⁻. From (α, α') , B(E2) values were deduced for the 58.5 and 77.5 levels.

R.M.E.=reduced matrix element from model-independent search from GOSIA least-squares fitting code for $\pi 1/2[530]$, $\pi 3/2[651]$ and mixed $\pi 1/2[400] + \pi 1/2[660]$ bands.

The level scheme is from 2003Wu03, which is considered by the evaluators, as superseding earlier studies from the same group reported in 1996Le01 and 1992De51. Most results in 2003Wu03 are from (58 Ni, 58 Ni' γ) experiment.

 $B(E\lambda)$ and $B(M\lambda)$ values are up values when listed for the levels, and down values when listed for the gammas.

²³¹Pa Levels

Reduced transition probabilities: B(E1), B(M1), B(E2), B(E3), B(E4) are deduced by evaluators from (R.M.E.)²/(2J+1), where J=initial spin. R.M.E.=Reduced Matrix Element given in Tables 4 and 5 of 2003Wu03. Units: E1 R.M.E. in $eb^{1/2}$, E2 R.M.E. in eb, E3 R.M.E. in $eb^{3/2}$, E4 R.M.E. in eb^2 , M1 R.M.E. in μ_N . Correspondingly, units of deduced transition probabilities are: e^2b for B(E1), e^2b^2 for B(E2), e^2b^3 for B(E3), e^2b^4 for B(E4), and μ_N^2 for B(M1).

E(level) [†]	Jπ‡	T _{1/2}	Comments
0.0 [#]	3/2-		
8.8 [#] 4	1/2-		E2 R.M.E. (from $3/2^-$, g.s.)= -2.37 13. B(E2)(from $3/2^-$, g.s.)= $1.40 + 16 - 15$. Sufficient information is lacking for deducing level $T_{1/2}$.
58.53 [#] 16	7/2-	281 ps 17	E2 R.M.E. (from $3/2^-$, g.s.)=+3.868 +107-96. B(E2)(from $3/2^-$, g.s.)=3.74 +21-18. Other: 4.5 7 and 5.9 9 (1992De51). T _{1/2} : deduced by evaluators from B(E2) for 58.6 γ . This value is in agreement with 274 ps 10 from γ (ce)(t) in ²³¹ Th β^- decay (1975Ho14).
77.52 [#] 17	5/2-		 E2 R.M.E. (from 1/2⁻,8.8)=+3.12 +56-37. B(E2)(from 1/2⁻,8.8)=3.2 +13-7. E2 R.M.E. (from 3/2⁻,g.s.)=1.899 +83-88. B(E2)(from 3/2⁻,g.s.)=0.90 8. Other: 1.0 3 (1992De51). Sufficient information is lacking for deducing level T_{1/2}, as 77.6γ is a double placement with undivided intensity, and Iγ(68.5γ) is unknown. In Fig. 9 of 1992De51, branching ratio of 87% (apparently I(γ+ce)) for an M1 transition of 19.0 keV to the 7/2⁻ member of the band at 58.5 keV was calculated using rotational model, Q₀ and (g_K-g_R) parameters.
83.90 [@] 22	5/2+		E1 R.M.E. (from $3/2^-$, g.s.)=+ 3.62×10^{-4} +70–170. B(E1)(from $3/2^-$, g.s.)= 3.3×10^{-8} +14–24. E1 R.M.E. (from $7/2^-$, 58.5)=+ 2.140×10^{-3} +160–90. B(E1)(from $7/2^-$, 58.5)= 0.57×10^{-6} +9–4. Sufficient information is lacking for deducing level T _{1/2} , as the intensity of the 83.8 γ is a lower

Coulomb excitation 2003Wu03 (continued)

²³¹Pa Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
			limit and that of the 25.4γ is unknown.
101.26 [@] 21	$7/2^{+}$		
101.8 ^w 3	3/2+		
111.58 ^w 19	9/2+		E3 R.M.E. (from $3/2^-$, g.s.)=+0.646 +54-277. B(E3)(from $3/2^-$, g.s.)=0.104 +19-70. Sufficient information is lacking for deducing level $T_{1/2}$.
168.72 [#] 16	11/2-	154 ps 12	E2 R.M.E. (from $7/2^-, 58.5$)=+5.51 +23-21. B(E2)(from $7/2^-, 58.5$)=3.8 3. T _{1/2} : deduced by evaluators from B(E2) and γ branching ratio for 110 γ .
171.70 [@] 19	11/2+		E3 R.M.E. (from $5/2^-, 77.5$)=+0.73 +29-30. B(E3)(from $5/2^-, 77.5$)=0.09 +8-6. Tug: sufficient information is lacking for deducing level Tug
174.0 ^{<i>a</i>} 3	$5/2^{-}$		$\Gamma_{1/2}$. Sumetone information is making for deducing level $\Gamma_{1/2}$.
183.4 ^b 4	$5/2^{+}$		
189.10 [@] 17	$13/2^{+}$		
193.02 [#] 19	9/2-	13.6 ps 19	E2 R.M.E. (from $5/2^-, 77.5$)=+3.885 +87-96. B(E2)(from $5/2^-, 77.5$)=2.52 +11-13. E2 R.M.E. (from $7/2^-, 58.5$)=+1.43 +12-15. B(E2)(from $7/2^-, 58.5$)=0.26 5. M1 R.M.E. (from $11/2^-, 168.7$)=-2.53 +21-30. B(M1)(from $11/2^-, 168.7$)=0.53 +14-8. T _{1/2} : deduced by evaluators from B(E2) and branching ratio for 115.5 γ .
218.3 ^{<i>a</i>} 3	$7/2^{-}$		
247.24 ^b 25	7/2+		
273.7 3	$1/2^{+}$		
274.8^{α} 3	9/2 ⁻	02 20	F_{2} D V_{1} F $(f_{1}, f_{1}) = (f_{1}, f_{2}) = (f_{1}, f_{2}) = (f_{2}, f_{2})$
300.95 79	15/2	82 ps 20	E2 R.M.E. (from 11/2 ⁺ , 171.7)=+6.10 +103-42. B(E2)(from 11/2 ⁺ , 171.7)=3.1 +11-4. E3 R.M.E. (from 9/2 ⁻ , 193.0)=+0.86 +34-29. B(E3)(from 9/2 ⁻ , 193.0)=0.07 +7-4. M1 R.M.E. (from 13/2 ⁺ , 189.1)=+0.419 +55-80. B(M1)(from 13/2 ⁺ , 189.1)=0.013 +3-5. T _{1/2} : deduced by evaluators from B(E2) and γ branching ratio for 129.2 γ , assuming pure M1 for 111.8 γ .
304.6 ^b 4	$(9/2^+)$		
311.65 25	5/2+	0.12 ns +17-6	E1 R.M.E. (from $3/2^-$, g.s.)=+1.32×10 ⁻³ +54-34. B(E1)(from $3/2^-$, g.s.)=0.44×10 ⁻⁶ +42-20. E1 R.M.E. (from $7/2^-$, 58.5)=-3.01×10 ⁻³ +95-85. B(E1)(from $7/2^-$, 58.5)=1.1×10 ⁻⁶ +8-6. E3 R.M.E. (from $11/2^-$, 168.7)=-0.87 +27-17. B(E3)(from $11/2^-$, 168.7)=0.06 3. T _{1/2} : deduced by evaluators from B(E1) and γ branching ratio for 253.2 γ .
316.80 [@] 18	17/2+	77 ps +27-18	E2 R.M.E. (from $13/2^+$, 189.1)=+6.60 +44-61. B(E2)(from $13/2^+$, 189.1)=3.1 +4-5. M1 R.M.E. (from $15/2^+$, 300.9)=+2.038 +168-95. B(M1)(from $15/2^+$, 300.9)=0.26 +4-2. T _{1/2} : deduced by evaluators from B(E2) and γ branching ratio for 127.7 γ .
317.78 ^{&} 25	3/2+	0.07 ns +11-3	E1 R.M.E. (from $1/2^-$, 8.8)=+1.30×10 ⁻³ +56-45. B(E1)(from $1/2^-$, 8.8)=0.9×10 ⁻⁶ +8-5. E1 R.M.E. (from $3/2^-$, g.s.)=+1.43×10 ⁻³ +40-51. B(E1)(from $3/2^-$, g.s.)=0.5×10 ⁻⁶ 3. E3 R.M.E. (from $3/2^-$, g.s.)=-0.58 +12-14.

From ENSDF

Coulomb excitation 2003Wu03 (continued)

²³¹Pa Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	Comments
			B(E3)(from $3/2^{-}$,g.s.)=0.08 +5-3.
310 0 ^C 3	3/2-		$T_{1/2}$: deduced by evaluators from B(E1) and branching ratio for 308.9 γ .
328.85 [#] 17	15/2 ⁻	74 ps 7	E2 R.M.E. (from 11/2 ⁻ ,168.7)=+6.35 +21-24. B(E2)(from 11/2 ⁻ ,168.7)=3.36 +23-25. E4 R.M.E. (from 7/2 ⁻ ,58.5)=+2.85 +99-84. B(E4)(from 7/2 ⁻ ,58.5)=1.0 +8-5.
344.5 ^{<i>a</i>} 3 351.6 ^c 3	$\frac{11}{2^{-}}$		$I_{1/2}$: deduced by evaluators from B(E2) and branching ratio for 160.1 γ .
351.71 [#] <i>1</i> 9	13/2-	10 ps +11-7	E2 R.M.E. (from $9/2^-, 193.0$)=+5.885 +224-46. B(E2)(from $9/2^-, 193.0$)=3.2 +13-7. E2 R.M.E. (from $11/2^-, 168.7$)=+0.85 +18-36. B(E2)(from $11/2^-, 168.7$)=0.060 +28-40. M1 R.M.E. (from $15/2^-, 328.9$)=-2.96 +21-79. B(M1)(from $15/2^-, 328.9$)=-0.55 +33-8. T _{1/2} : deduced by evaluators from B(E2) and branching ratio for 158.5 γ .
391.93 ^{&} 23	9/2+	94 ps +58-39	E1 R.M.E. (from $7/2^-$, 58.5)=+2.18×10 ⁻³ +17-24. B(E1)(from $7/2^-$, 58.5)=0.59×10 ⁻⁶ +10-12. E1 R.M.E. (from $11/2^-$, 168.7)=-3.40×10 ⁻³ +47-36. B(E1)(from $11/2^-$, 168.7)=0.96×10 ⁻⁶ +22-24. E2 R.M.E. (from $5/2^+$, 311.7)=+4.73 +116-31. B(E2)(from $5/2^+$, 311.7)=3.7 +21-4. E3 R.M.E. (from $3/2^-$, $g.s.$)=+0.47 +13-11. B(E3)(from $3/2^-$, $g.s.$)==0.06 3. E3 R.M.E. (from $15/2^-$, 328.9)=-1.06 +21-40. B(E3)(from $15/2^-$, 328.9)=0.07 +6-2.
395.75 ^c 22	7/2-		$1_{1/2}$. deduced by evaluators from $D(E1)$ and orandring ratio for 555.57.
406.1 ^b 3	$(11/2^+)$		
408.49 ^{&} 23	7/2+	0.05 ns +10-3	E1 R.M.E. (from $5/2^-$, 77.5)=+2.58×10 ⁻³ +42-93. B(E1)(from $5/2^-$, 77.5)=1.1×10 ⁻⁶ +4-6. E2 R.M.E. (from $3/2^+$, 317.8)=+4.02 +93-199. B(E2)(from $3/2^+$, 317.8)=4.0 +21-30. E3 R.M.E. (from $3/2^-$, g.s.)=+0.39 +11-16. B(E3)(from $3/2^-$, g.s.)=0.038 25. T ₁ is i deduced by evaluators from B(E1) and branching ratio for 330 9y
424.90 ^{<i>a</i>} 22 450.54 ^{<i>c</i>} 22	13/2 ⁻ 9/2 ⁻		$\Gamma_{1/2}$. deduced by evaluators from $D(E1)$ and orandining ratio for 550.77.
487.59 [@] 20	19/2+	21 ps 4	E2 R.M.E. (from $15/2^+$, 300.9)=+7.06 +41-48. B(E2)(from $15/2^+$, 300.9)=3.1 4. E3 R.M.E. (from $13/2^-$, 351.7)=+0.96 +36-19. B(E3)(from $13/2^-$, 351.6)=0.07 +5-3. M1 R.M.E. (from $17/2^+$, 316.8)=+0.754 +78-149. B(M1)(from $17/2^+$, 316.9)=0.032 +6-12. T _{1/2} : deduced by evaluators from B(E2) and branching ratio for 186.6y.
494.77 [@] 18	21/2+	31 ps 11	E2 R.M.E. (from $17/2^+$, 316.8)=+7.49 +69-47. B(E2)(from $17/2^+$, 316.9)=3.1 +6-4. M1 R.M.E. (from $19/2^+$, 487.6)=+4.01 +15-16. B(M1)(from $19/2^+$, 487.6)=0.80 +7-6.
520.5 ^a 3	(15/2 ⁻)		$I_{1/2}$: deduced by evaluators from B(E2) and branching ratio for 1/7.96 γ .
525.14 ^{&} 23	13/2+	54 ps +33–25	E1 R.M.E. (from $11/2^{-}, 168.7$)=+2.57×10 ⁻³ +35–28.

 $^{231}_{91}$ Pa $_{140}$ -4

Coulomb excitation 2003Wu03 (continued)

²³¹Pa Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
			B(E1)(from $11/2^-$,168.7)=0.55×10 ⁻⁶ +16-11. E2 R.M.E. (from $9/2^+$,391.9)=+5.88 +133-67. B(E2)(from $9/2^+$,391.9)=3.5 +17-7. T _{1/2} : deduced by evaluators from B(E1) and branching ratio for 356.2 γ .
535.73 [#] 17	19/2-	30.4 ps 21	E2 R.M.E. (from $15/2^-, 328.9$)=+7.20 +21-19. B(E2)(from $15/2^-, 328.9$)=3.24 +19-17. E4 R.M.E. (from $11/2^-, 168.7$)=+3.3 +13-11. B(E4)(from $11/2^-, 168.7$)=0.9 +9-5. T _{1/2} : deduced by evaluators from B(E2) and branching ratio for 206.88 γ .
542.7 ^{&} 4	11/2+	43 ps +78–24	E1 R.M.E. (from $9/2^-, 193.0) = +3.44 \times 10^{-3} + 61 - 107$. B(E1)(from $9/2^-, 193.0) = 1.2 \times 10^{-6} + 4 - 6$. E2 R.M.E. (from $7/2^+, 408.5) = +5.3 + 12 - 14$. B(E2)(from $7/2^+, 408.5) = 3.5 + 18 - 16$. E3 R.M.E. (from $5/2^-, 77.5) = +0.87 + 18 - 19$. B(E3)(from $5/2^-, 77.5) = 0.13 5$. T _{1/2} : deduced by evaluators from B(E1) and branching ratio for 349.7γ .
551.51 [#] 19	17/2-	23.4 ps 15	E2 R.M.E. (from $13/2^-, 351.7$)=+7.05 +15-14. B(E2)(from $13/2^-, 351.6$)=3.55 +15-14. E2 R.M.E. (from $15/2^-, 328.9$)=+0.84 +18-26. B(E2)(from $15/2^-, 328.9$)=0.044 +21-23. M1 R.M.E. (from $19/2^-, 535.7$)=-3.333 +127-74. B(M1)(from $19/2^-, 535.8$)=0.56 +2-5. T _{1/2} : deduced by evaluators from B(E2) and branching ratio for 199.8 γ .
604.0 ^d 3	(3/2-)		
631.9^{a} 3	$(5/2^{-})$		
$0/7.8^{-4}$	(1/2)	34 ps 14	E1 R M E (from $15/2^{-} 328.0) = \pm 3.00 \times 10^{-3} \pm 86 - 32$
105.2 5	17/2	5- ps 1-	B(E1)(from $15/2^{-},328.9)=0.95\times10^{-6}+31-15$. E2 R.M.E. (from $13/2^{+},525.1)=+6.8+17-16$. B(E2)(from $13/2^{+},525.1)=3.3+19-14$. T _{1/2} : deduced by evaluators from B(E1) and branching ratio for 376.4γ .
717.1 3	15/2+	37 ps <i>13</i>	E1 R.M.E. (from $13/2^-, 351.7$)=+ $3.21 \times 10^{-3} + 36 - 39$. B(E1)(from $13/2^-, 351.7$)= $0.74 \times 10^{-6} 17$. E2 R.M.E. (from $11/2^+, 542.7$)=+ $6.37 + 190 - 60$. B(E2)(from $11/2^+, 542.7$)= $3.4 + 23 - 6$. E3 R.M.E. (from $9/2^-, 193.0$)=+ $1.06 + 47 - 23$. B(E3)(from $9/2^-, 193.0$)= $0.11 + 12 - 4$. T _{1/2} : deduced by evaluators from B(E1) and branching ratio for 365.4γ .
721.38 [@] 20	25/2+	30 ps +30-6	E2 R.M.E. (from $21/2^+,494.8$)=+8.26 +86-287. B(E2)(from $21/2^+,494.8$)=2.6 +6-13. T _{1/2} : deduced by evaluators from B(E2) for 226.6 γ .
728.4 [@] 3	23/2+	6.9 ps 15	T _{1/2} : deduced by evaluators from B(E2) and branching ratio for 240.9γ. E2 R.M.E. (from $19/2^+$,487.6)=+7.89 +69–98. B(E2)(from $19/2^+$,487.6)=3.1 +6–7. E3 R.M.E. (from $17/2^-$,551.5)=+1.06 +26–23. B(E3)(from $17/2^-$,551.5)=0.06 +4–2.
734.0 ^{<i>d</i>} 4	(9/2-)		
785.56 [#] 19	23/2-	13.5 ps 8	T _{1/2} : deduced by evaluators from B(E2) and branching ratio for 249.8γ. E2 R.M.E. (from $19/2^-,535.7$)=+8.12 +23-25. B(E2)(from $19/2^-,535.7$)=3.30 +19-20. E4 R.M.E. (from $15/2^-,328.9$)=+3.8 +12-15. B(E4)(from $15/2^-,328.9$)=0.9 +7-6.
788.06 [#] 20	21/2-	19.3 ps 16	$T_{1/2}$: deduced by evaluators from B(E2) and branching ratio for 236.58 γ .

Coulomb excitation 2003Wu03 (continued)

²³¹Pa Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
030.2& 5	21/2+		E2 R.M.E. (from 17/2 ⁻ ,551.5)=+7.58 +28–29. B(E2)(from 17/2 ⁻ ,551.5)=3.19 24. In Fig. 9 of 1992De51, branching ratio of 12% (apparently I(γ +ce)) for an M1 transition of 2.5 keV to the 19/2 ⁻ member of the band at 785.56 keV was calculated using rotational model, Q ₀ and (g _K -g _R) parameters.
$930.2 \ 5$	$\frac{21}{2}$ 10/2 ⁺		E1 P M E (from $17/2^{-551}$ 5) = $\pm 4.61 \times 10^{-3} \pm 47 - 66$
940.0 9	19/2		B(E1)(from $17/2^{-},551.5$)=1.18×10 ⁻⁶ +25-31. E2 R.M.E. (from $15/2^{+},717.1$)=+7.24 +173-72. B(E2)(from $15/2^{+},717.1$)=3.3 +17-6. Sufficient information is lacking for deducing level T _{1/2} as the 394.5 γ is a double placement with undivided intensity and I γ (228.9 γ) is unknown.
993.8 [@] 3	$29/2^+$		
1019.2 [@] 4	$27/2^+$	6 ps +11-4	$T_{1/2}$: deduced by evaluators from B(M1) and γ -branching for 298.0 γ .
1057.11 [#] 21	25/2-	10.2 ps 18	E2 R.M.E. (from $21/2^-$,788.1)=+8.38 +60-35. B(E2)(from $21/2^-$,788.1)=3.2 +5-3. T _{1/2} : deduced by evaluators from B(E2) and γ -branching for 269.1 γ .
1074.29 [#] 23	27/2-	6.2 ps +13-9	E2 R.M.E. (from $23/2^-$,785.6)=+8.73 +35-50. B(E2)(from $23/2^-$,785.6)=3.18 +26-36. M1 R.M.E. (from $25/2^-$,1057.1)=+3.75 +184-31. B(M1)(from $25/2^-$,1057.1)=0.54 +66-8. T _{1/2} : deduced by evaluators from B(E2) and γ -branching for 288.7 γ .
1196.2 ^{&} 4	$23/2^{+}$		
1307.8 [@] 4	$33/2^{+}$		
1355.5 [#] 4	29/2-	6.8 ps +7-17	E2 R.M.E. (from $25/2^-$, 1057.1)=+9.06 +51-169. B(E2)(from $25/2^-$, 1057.1)=3.2 +3-11. M1 R.M.E. (from $27/2^-$, 1074.3)=+0.54 +22-11. B(M1)(from $27/2^-$, 1074.3)=0.010 +11-3. T _{1/2} : deduced by evaluators from B(E2) and γ -branching for 298.6 γ .
1357.5 [@] 5	$31/2^{+}$		
1398.1 [#] 3	31/2-	3.1 ps +11-6	E2 R.M.E. (from $27/2^-$,1074.3)=+9.38 +38-80. B(E2)(from $27/2^-$,1074.3)=3.1 +3-5. M1 R.M.E. (from $29/2^-$,1355.5)=+4.02 +40-125. B(M1)(from $29/2^-$,1355.5)=0.54 +11-28. T _{1/2} : deduced by evaluators from B(E2) and γ -branching for 323.8 γ .
1660.4 [@] 6	$37/2^{+}$		
1683.2 [#] 5	33/2-		
1754.1 [#] 4	35/2-	1.2 ps +19-7	T _{1/2} : deduced by evaluators from B(E1) \downarrow =9×10 ⁻⁶ 4 and γ-branching for 446.9γ. E2 R.M.E. (from 31/2 ⁻ ,1398.1)=+0.10 +39-41. B(E2)(from 31/2 ⁻ ,1398.1)=0.0003 +72-3 or 0.0003 +27-3, first for +0.39 uncertainty, second for -0.41 uncertainty in R.M.E.
2040.4 ^{#} 10	37/2-		
2139.3 [#] 5	39/2-	1.2 ps +32-8	T _{1/2} : deduced by evaluators from B(E1) \downarrow =1.6×10 ⁻⁵ +13-10 and γ -branching for 479.0 γ .

[†] From least-squares fit to $E\gamma$ data.

⁺ From feast-squares in to Ey data. ⁺ As given in Figs. 4 and 7 of 2003Wu03, based on band structures and Nilsson assignments. [#] Band(A): $\pi 1/2[530]$. [@] Band(B): $\pi 3/2[651]$. [&] Band(C): $\pi 1/2[400] + \pi 1/2[660]$.

Coulomb excitation 2003Wu03 (continued)

²³¹Pa Levels (continued)

- ^a Band(D): π5/2[512].
 ^b Band(E): π5/2[642].
 ^c Band(F): π3/2[532].
 ^d Band(G): π3/2[521].

 γ ⁽²³¹Pa)

Transition probabilities in Weisskopf units are deduced by evaluators from: $B(E1)(W.u.)=41.2(B(E1)\downarrow)$; $B(E2)(W.u.)=118.8(B(E2)\downarrow)$; $B(E3)(W.u.)=315.4(B(E3)\downarrow)$; $B(E4)(W.u.)=792.0(B(E4)\downarrow)$; $B(M1)(W.u.)=0.558(B(M1)\downarrow)$ for A=231; where $B(E\lambda)\downarrow=B(E\lambda)\uparrow(2J_{i}+1)/(2J_{f}+1)$.

E_{γ}^{\dagger}	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	$\alpha^{\boldsymbol{b}}$	Comments
(7.2 [@])	0.014 4	494.77	21/2+	487.59	19/2+	[M1]	2.4×10 ³ 6	B(M1)(W.u.)=0.406 +36-31. I γ =0.014 +4-3 deduced from B(M1)(W.u.)(7.2 γ)/B(E2)(W.u.)(177.96 γ) and
(8.8)		8.8	1/2-	0.0	3/2-	[M1+E2]		B(E2)(W.u.)=333 +38-36. Mult.: from experimental B(E2), the transition is expected to be M1+E2, probably dominant M1. α (theory)=1.34×10 ³ for M1, 4.67×10 ⁵ for E2 for E γ =8.8 4.
(15.8 [@])	0.28 2	551.51	17/2-	535.73	19/2-	[M1]	235 24	 B(M1)(W.u.)=0.347 +12-31. I_γ: 0.28 2 deduced by evaluators from B(M1)(W.u.)(15.8γ)/B(E2)(W.u.)(199.8γ) and Iγ. In Fig. 9 of 1992De51, branching ratio of 51% (apparently I(γ+ce)) for an M1 transition of 15.8 keV to the 19/2⁻ member of the band at 535.7 keV was calculated using rotational model, Q₀ and (g_K-g_R) parameters.
(15.9 [@])	0.17 3	316.80	17/2+	300.95	15/2+	[M1]	230 50	B(M1)(W.u.)= $0.129 + 20 - 10$. I γ =0.17 3 deduced from B(M1)(W.u.)(15.9 γ)/B(E2)(W.u.)(127.7 γ).
(17.2 [@])	0.031 16	1074.29	27/2-	1057.11	25/2-	[M1]	183 <i>17</i>	B(M1)(W.u.)=0.28 +34-4. I _{γ} : 0.019 +28-4 deduced by evaluators from B(E2)(W.u.)(288.7 γ)/B(M1)(W.u.)(17.2 γ).
(22.8 [@])	0.7 5	351.71	13/2-	328.85	15/2-	[M1]	320 22	B(M1)(W.u.)=0.35 +21-5. In Fig. 9 of 1992De51, branching ratio of 90% (probably I(γ +ce)) for an M1 transition of 22.8 keV to the 15/2 ⁻ member of the band at 328.9 keV was theoretically calculated using rotational model, Q ₀ and (g _K -g _R) parameters. I γ =0.49 +68-23 deduced from B(E4)(W.u.)(270.4 γ)/B(E2)(W.u.)(160.13 γ) and I γ (160.13).
(24.3 [@])	0.70 14	193.02	9/2-	168.72	11/2-	[M1]	270 40	 B(M1)(W.u.)=0.35 +9-5. Deduced Iγ=0.67 +17-10 from B(M1)(W.u.) for 24.3γ and B(E2)(W.u.) and Iγ for 115.5γ. In Fig. 9 of 1992De51, branching ratio of 94% (apparently I(γ+ce)) for an M1 transition of 24.3 keV to the 11/2⁻ member of the band at 168.7 keV was calculated using rotational model, Q₀ and (g_K-g_R) parameters.
(25.4 [@])		83.90	5/2+	58.53	$7/2^{-}$	[E1]	4.5 5	$B(E1)(W.u.)=31\times10^{-6}+5-2.$
(42.6 [@])	0.038 21	1398.1	31/2-	1355.5	29/2-	[M1]	50.7 20	B(M1)(W.u.)= $0.28 + 6 - 15$. I _y : 0.040 +15-23 deduced by evaluators from B(E2)(W.u.)(323.8 γ)/B(M1)(W.u.)(42.6 γ).
42.7 8	0.7 4	101.26	7/2+	58.53	7/2-	[E1]	1.15 6	

Ţ

						Coulomb e	excitation 2003	3Wu03 (continued)
							γ ⁽²³¹ Pa) (conti	nued)
E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	α ^b	Comments
(48.2 [@])	3.2 16	535.73	19/2-	487.59	19/2+	[E1]	0.83 5	E1 R.M.E.= $-0.0128 + 32 - 50$. B(E1)= $8 \times 10^{-6} + 8 - 3$. B(E1)(W.u.)= $3.3 \times 10^{-4} + 33 - 12$.
52.2.8	072	111 50	0/2+	50 52	7/2-	[[7]]	064.2	$I\gamma=2.4 + 24-9$ deduced from B(E1)(W.u.)(48.2 γ)/B(E2)(W.u.)(206.9 γ) and $I\gamma(206.9\gamma)$.
53.2 8 57.2 2	0.7 3 7.8 7	168.72	9/2* 11/2 ⁻	58.55 111.58	9/2 ⁺	[E1] [E1]	0.64 5 0.529 9	E1 R.M.E. (from branching ratios)=5.3×10 ⁻³ 3. B(E1)=2.34×10 ⁻⁶ +27-16. B(E1)(W.u.)=9.6×10 ⁻⁵ +11-7. E1 R.M.E.=+4.01×10 ⁻³ +48-32.
(57.2 [@])	0.091 23	785.56	23/2-	728.4	23/2+	[E1]	0.53 3	 B(E1)=1.34×10⁻⁶ +34-21. B(E1)(W.u.)=5.5×10⁻⁵ +14-9. I_γ: 0.091 23 deduced by evaluators from B(E2)(W.u.)(249.8γ)/B(E1)(W.u.)(57.2γ). α: assuming 1.0 keV uncertainty in Eγ. E1 R.M.E.=-0.0155 +22-14. B(E1)=1.0×10⁻⁵ +2-3. B(E1)(W.u.)=4.1×10⁻⁵
58.6 2	7.7 6	58.53	7/2-	0.0	3/2-	[E2]	155 4	+8-12. B(E2)(W.u.)=222 +13-11.
60.3 <i>3</i>	2.8 6	171.70	11/2+	111.58	9/2+	[M1]	18.3 4	$E\gamma$ =58.6 2, $I\gamma$ =4.9 9 (1996Le01). M1 R.M.E. (from branching ratios)=0.32 6. B(M1)=0.0085 +35-29. B(M1)(W II)=0.0047 +19-16.
x60.5 3	1.3 6						2	
(63.0 ^{@a})		391.93	9/2+	328.85	15/2-	[E3]	4.4×10 ³ 2	B(E3)(W.u.)=35 +30-10. I γ =0.4×10 ⁻⁹ +6-2 deduced from B(E3)(W.u.)(63.0 γ)/B(E1)(W.u.)(333.5 γ) and I ₄ (233.5)
68.5		77.52	5/2-	8.8	1/2-	[E2]	73.3 10	B(E2)(W.u.)=127 +52-28. E_{γ} : from Fig. 4; not listed in Tables 1 and 2. $E_{\gamma} = 68.5.6$ [$\nu_{\gamma} < 0.5$ (1996] e01)
70.4 3	0.7 2	171.70	$11/2^{+}$	101.26	7/2+	[E2]	64.3 16	
72.8 2	1.2 3	174.0	$5/2^{-}$	101.26	7/2+	[E1]	0.279 5	$E\gamma = 72.8 \ 2, \ I\gamma = 1.3 \ 2 \ (1996 Le 01).$
77.6 ^{<i>a</i>} 2	2.1 ^{<i>a</i>} 2	77.52	5/2-	0.0	3/2-	[M1+E2]	25 16	B(E2)(W.u.)=71 6. E γ =78.3 2, I γ =1.3 2 (1996Le01).
77.6 ^{<i>d</i>} 2	2.1 ^{<i>a</i>} 2	189.10	$13/2^{+}$	111.58	9/2+	[E2]	40.5 8	
(80.2 [@])	0.2 1	391.93	9/2+	311.65	5/2+	[E2]	34.6 12	B(E2)(W.u.)=264 +150-29. I γ =0.15 +15-4 deduced from B(E2)(W.u.)(80.2 γ)/B(E1)(W.u.)(333.5 γ) and I γ (333.5).
81.2 [#]	1.7 [#] 3	183.4	$5/2^{+}$	101.8	$3/2^{+}$	[M1]	7.67 11	$E\gamma = 81.2$ 2, $I\gamma = 2.9$ 4 (1996Le01).
81.6 4	1.4 5	193.02	9/2-	111.58	9/2+	[E1]	0.207 4	E1 R.M.E. (from branching ratios)= 2.3×10^{-3} 4. B(E1)= 0.53×10^{-6} +20–17. B(E1)(W.u.)= 2.2×10^{-5} +8–7.
82.1 [#]	1.7 [#] 3	183.4	5/2+	101.26	7/2+	[M1]	7.43 11	
83.8 4	>2.0	83.90	5/2+	0.0	3/2-	[E1]	2.17 21	B(E1)(W.u.)=9.1×10 ⁻⁷ +39-66. E_{γ} : contaminated with E γ =83.780 from background line. I_{γ} : >1.5 5 in Table 1 of 2003Wu03. α : experimental value of anomalous conversion coefficient (1975Ho14). E_{γ} =83.9 2, I_{γ} =5.1 6 (1996Le01).

 ∞

From ENSDF

						Coulomb excitation		2003Wu03 (continued)
							$\gamma(^{231}\text{Pa})$	(continued)	
E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	δ	$\alpha^{\boldsymbol{b}}$	Comments
89.9 <i>3</i>	5.1 6	174.0	5/2-	83.90	5/2+	[E1]		0.160 3	Eγ=90.0 <i>1</i> , Iγ=4.9 6 (1996Le01).
(90.7 [@])	0.15 14	408.49	7/2+	317.78	3/2+	[E2]		19.4 6	B(E2)(W.u.)=238 +125-179. I γ =0.07 +22-6 deduced from B(E2)(W.u.)(90.7 γ)/B(E1)(W.u.)(330.9 γ) and I γ (330.9 γ).
91.4 ^f 6	43	193.02	9/2-	101.26	$7/2^{+}$	[E1]		0.153 4	
(94.2 ^{@a})		171.70	$11/2^{+}$	77.52	$5/2^{-}$	[E3]		450 30	B(E3)(W.u.) = 14 + 12 - 9.
100.4 8	0.2 1	274.8	9/2-	174.0	5/2-	[E2]		12.0 5	
106.6 6	62	218.3	$7/2^{-}$	111.58	9/2+	[E1]		0.1023 21	
(108.0 ^{@a})		300.95	15/2+	193.02	9/2-	[E3]		208 12	B(E3)(W.u.)=14 +14-8. Deduced I γ =3.4×10 ⁻⁸ +44-23 from B(E3)(W.u.) for 108.0 γ and B(E2)(W.u.) and I γ for 129.2 γ .
110.20 5	100 5	168.72	11/2-	58.53	7/2-	[E2]		7.80 11	B(E2)(W.u.)=301 24. E γ =110.2 1, I γ =100 (1996Le01).
(111.6 ^{@a})		111.58	9/2+	0.0	3/2-	[E3]		174 10	B(E3)(W.u.)=13 + 2 - 9.
111.8 2	6.5 6	300.95	15/2+	189.10	13/2+	[M1]		3.04 4	 M1 R.M.E. (from branching ratios)=1.00 8. B(M1)=0.063 10. B(M1)(W.u.)=0.035 6. B(M1)(W.u.)=0.0063 +15-24. This value is low by a factor of ≈6 compared to the transition probability from branching ratios
115.5 3	1.6 2	193.02	9/2-	77.52	5/2-	[E2]		6.49 12	B(E2)(W.u.)=180 +8-9. E γ =115.5 2, I γ =2.8 3 (1996Le01).
116.8 8 (121.1 8)	0.8 4	218.3 304.6	7/2 ⁻ (9/2 ⁺)	101.26 183.4	7/2 ⁺ 5/2 ⁺	[E1]		0.342 7	
126.3 5	0.4 2	344.5	$11/2^{-}$	218.3	7/2-	[E2]		4.41 10	
127.7 1	10.2 8	316.80	17/2+	189.10	13/2+	[E2]		4.21 6	B(E2)(W.u.)=286 +37-46. E γ =128.2 2, I γ =4.5 6 (1996Le01), placed from 536 level.
129.2 1	8.0 7	300.95	$15/2^{+}$	171.70	$11/2^+$	[E2]		4.00 6	B(E2)(W.u.)=276 + 98 - 36.
(133.2 ^w)	1.4 7	525.14	13/2+	391.93	9/2+	[E2]		3.52 8	B(E2)(W.u.)=297 +144-60. I γ =1.1 +10-4 deduced from B(E2)(W.u.)(133.2 γ)/B(E1)(W.u.)(356.2 γ) and I γ (356.2 γ).
(134.2 [@])	0.7 5	542.7	11/2+	408.49	7/2+	[E2]		3.41 8	B(E2)(W.u.)=277 +143-127. I γ =0.42 +88-25 deduced from B(E2)(W.u.)(134.2 γ)/B(E1)(W.u.)(349.7 γ) and I γ (349.7 γ).
134.4 ^{<i>d</i>} 2	1.2 ^d 3	193.02	9/2-	58.53	7/2-	(E2+M1)	4.0 9	3.70 20	M1 R.M.E. (from branching ratios)= $0.040 \ 8. \ B(M1)=1.6\times 10^{-4}$ +7-6.
	10								B(E2)(W.u.)=25 5. B(M1)(W.u.)= $0.9 \times 10^{-4} + 4 - 3$. δ : deduced by evaluators from E2 and M1 matrix elements. E γ =134.3 2, I γ =1.6 2 (1996Le01), placed from 218 level only.
134.4 ^{<i>d</i>} 2 (135.7 5)	d&	218.3 247.24	7/2 ⁻ 7/2 ⁺	83.90 111.58	5/2+ 9/2+				
(135.9 ^{@a})		487.59	19/2+	351.71	13/2-	[E3]		58.8 15	B(E3)(W.u.)=15 +11-6. I γ =2.4×10 ⁻⁸ +24-11 deduced from B(E3)(W.u.)(135.9 γ)/B(E2)(W.u.)(186.6 γ) and I γ (186.6 γ).

From ENSDF

 $^{231}_{91}\mathrm{Pa}_{140}$ -9

	Coulomb excitation 2003Wu03 (continued)											
$\gamma(^{231}\text{Pa})$ (continued)												
E_{γ}^{\dagger}	E_{γ}^{\dagger} I_{γ} $E_{i}(\text{level})$ J_{i}^{π} E_{f} J_{f}^{π} Mult. δ α^{b} Comments											
(136.4 3)		319.9	$\frac{1}{3/2^{-}}$	183.4	$\frac{1}{5/2^+}$				γ from (p,2n γ).			
x139.5 5	0.5 3	220.05	15/2-	100 10	12/2+	(121)		0.005.3				
139.75 5	48.2 11	328.85	15/2-	189.10	13/2+	[E1]		0.225 3	E1 R.M.E.=+4.955×10 ⁻⁵ +110-40. B(E1)=1.54×10 ⁻⁶ +7-3. B(E1)(W.u.)= 6.3×10^{-5} +3-1. E1 R.M.E. (from branching ratios)= 6.3×10^{-3} 4. B(E1)= 2.48×10^{-6} +33-30. B(E1)(W.u.)= 10.2×10^{-5} +14-3. Ey=139.8 1, Iy= 36.3 15 (1996Le01).			
(143.0 ^{@a})		311.65	5/2+	168.72	11/2-	[E3]		45 2	B(E3)(W.u.)=38 19. I γ =7×10 ⁻⁸ +17-5 deduced from B(E3)(W.u.)(143 γ)/B(E1)(W.u.)(253.2 γ) and I γ (253.2).			
145.9 2 ×155 5 3	& 153	247.24	7/2+	101.26	7/2+							
158.5 3	10.5 15	351.71	13/2-	193.02	9/2-	[E2]		1.72 3	B(E2)(W.u.)=272 + 111-60. Ev=158 5 3 [v=17 5 (1996] e01)			
158.8 5	0.3 2	406.1	$(11/2^+)$	247.24	7/2+	[E2]		1.71 4				
160.13 5	268 15	328.85	15/2-	168.72	11/2-	[E2]		1.650 23	B(E2)(W.u.)=299 + 21 - 22. E _V =160 1 <i>J</i> = b _V =212 0 (1996 La01)			
162.4 5	1.0 5	351.71	13/2-	189.10	13/2+	[E1]		0.1577 25	E1 R.M.E. (from branching ratios)= $3.3 \times 10^{-3} 8$. B(E1)= $0.8 \times 10^{-6} 4$. B(E1)(W.u.)= $3.3 \times 10^{-5} 17$.			
163.5 ^d 3	1.2 ^d 3	247.24	7/2+	83.90	5/2+	[M1]		5.02 7	$E\gamma = 163.5 6$, $I\gamma = 0.5 2$ (1996Le01), placed from 247 level only.			
163.5 ^d 3	1.2 ^d 3	274.8	9/2-	111.58	9/2+	[E1]		0.1552 22				
171.0 2	3.9 <i>3</i>	487.59	19/2+	316.80	17/2+	[M1]		4.42 6	M1 R.M.E. (from branching ratios)=1.25 8. B(M1)=0.078 10. B(M1)(W.u.)=0.043 6. B(M1)(W.u.)=0.016 $+3-6$ from Coul. ex. matrix elements. The two values are in disagreement. E γ =171.3 2. I γ =1.3 2 (1996Le01), unplaced.			
173.5 2	1.4 2	274.8	9/2-	101.26	7/2+	[E1]		0.1348 19	$E\gamma = 173.3 2$, $I\gamma = 1.4 2$ (1996Le01), placed from 717 level.			
174.3	2.4 10	717.1	15/2+	542.7	11/2+	[E2]		1.181 <i>17</i>	B(E2)(W.u.)= $303 + 205 - 54$. I _{γ} : 2.4 <i>10</i> deduced by evaluators from B(E2)(W.u.)(174.3 γ)/B(E1)(W.u.)(365.4 γ).			
(176.9 [@] <i>a</i>)		728.4	23/2+	551.51	17/2-	[E3]		14.6 2	I _{γ} : 1.7×10 ⁻⁸ 9 deduced by evaluators from B(E2)(W.u.)(240.9 γ)/B(E3)(W.u.)(176.9 γ). B(E3)(W.u.)=14 +9-5.			
177.96 6	16.5 6	494.77	21/2+	316.80	17/2+	[E2]		1.090 15	B(E2)(W.u.) = 301 + 58 - 39. $E\gamma = 178.1 I, I\gamma = 3.0 4 (1996Le01), unplaced.$			
180.0 2	2.3 3	351.71	13/2-	171.70	11/2+	[E1]		0.1236 <i>17</i>	E1 R.M.E. (from branching ratios)= $5.2 \times 10^{-3} 5$. B(E1)= $1.9 \times 10^{-6} + 4 - 3$. B(E1)(W.u.)= $7.8 \times 10^{-5} + 16 - 12$. E γ =180.0 2, I γ =1.3 3 (1996Le01), placed from 705 level.			
(180.1 [@])	2.6 12	705.2	17/2+	525.14	13/2+	[E2]		1.041 15	B(E2)(W.u.)= $305 + 176 - 130$. I _y : 2.6 12 deduced by evaluators from B(E2)(W.u.)(180.1 γ)/B(E1)(W.u.)(376.4 γ).			
183.3 2	1.2 2	351.71	$13/2^{-}$	168.72	11/2-	[M1+E2]	1.1 +12-7	2.2 11	M1 R.M.E. (from branching ratios)= 0.125 . B(M1)= 0.0010			

From ENSDF

10

 $^{231}_{91}\mathrm{Pa}_{140}$ -10

					Coulomb e	xcitation 2	003Wu03 (coi	ntinued)		
	γ ⁽²³¹ Pa) (continued)									
E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$E_f = J_f^{\pi}$	Mult.	δ	$\alpha^{\boldsymbol{b}}$	Comments		
								+11-6. B(M1)(W.u.)=0.00056 +62-34. B(E2)(W.u.)=6.1 +29-41. δ : deduced by evaluators from E2 and M1 matrix elements. Ex=183.6.3. [y=0.6.2 (1996).e01)		
186.6 <i>1</i>	7.1 <i>3</i>	487.59	19/2+	300.95 15/2	2 ⁺ [E2]		0.909 13	B(E2)(W.u.)=295 38. E γ =186.5 <i>I</i> , I γ =2.2 3 (1996Le01), unplaced.		
196.8 <i>3</i> 199.82 <i>6</i>	1.5 <i>3</i> 71.0 25	525.14 551.51	13/2 ⁺ 17/2 ⁻	328.85 15/2 351.71 13/2	2 ⁻ [E1] 2 ⁻ [E2]		0.1002 <i>14</i> 0.704 <i>10</i>	$E_{\gamma}=196.8\ 2,\ I_{\gamma}=1.2\ 3\ (1996Le01).$ B(E2)(W.u.)=328 +14-13. E $_{\gamma}=199.8\ I,\ I_{\gamma}=21.2\ II\ (1996Le01).$		
(203.3 <i>3</i>) 206.88 <i>5</i>	206 10	304.6 535.73	(9/2 ⁺) 19/2 ⁻	101.26 7/2 ² 328.85 15/2	⊧ 2 [–] [E2]		0.619 9	B(E2)(W.u.)=308 + 18 - 16. $E_{4}=207 + 1 - 16 - 84 - 4 (1996 + 201)$		
215.5 2	1.3 4 &	408.49 319.9	$7/2^+$ $3/2^-$	193.02 9/2 ⁻	- [E1]		0.0810 12	$E_{\gamma}=217.6 \ 1, \ 1_{\gamma}=0.4 \ 7 \ (1996Le01).$ $E_{\gamma}=217.6 \ 1, \ 1_{\gamma}=1.6 \ 4 \ (1996Le01).$		
218.93 6	47.2 9	535.73	19/2-	316.80 17/2	2 ⁺ [E1]		0.0781 11	E1 R.M.E.=+ $6.03 \times 10^{-3} + 13 - 14$. B(E1)= 1.82×10^{-6} 9. B(E1)(W.u.)= 7.5×10^{-5} 4.		
								E1 R.M.E. (from branching ratios)= 8.0×10^{-3} 4. B(E1)= 3.2×10^{-6} 3. B(E1)(W.u.)= 1.32×10^{-4} 12. E γ =218.7 1, I γ =21.4 3 (1996Le01), placed from 351.5 level.		
223.0 ^e 3	0.1 ^e 1	391.93	9/2+	168.72 11/2	2 ⁻ [E1]		0.0748 11	B(E1)(W.u.)= $4.7 \times 10^{-5} + 11 - 12$. E γ =222.5 3, I γ =1.5 2 (1996Le01).		
223.0 ^e 3	1.8 ^e 5	551.51	17/2-	328.85 15/2	2 ⁻ [M1+E2]	1.3 +21-7	1.1 6	B(E2)(W.u.)=4.6 +22-24. M1 R.M.E. (from branching ratios)=0.12 6. B(M1)=0.0008 +10-6. B(M1)(W.u.)=0.00045 +56-34. δ: from F2 and M1 matrix elements		
226.6 1	12.0 6	721.38	25/2+	494.77 21/2	2 ⁺ [E2]		0.447 6	B(E2)(W.u.)=261 +60-130. E γ =226.7 2, I γ =1.2 2 (1996Le01), placed from 930 level.		
(228.9 [@])	4.3 22	946.0	19/2+	717.1 15/2	2 ⁺ [E2]		0.432 6	B(E2)(W.u.)=314 +162-57. I γ =3.1 +34-10 deduced from B(E2)(W.u.)(228.9 γ)/B(E1)(W.u.)(394.5 γ) and I γ (394.5).		
232.9 2	&	344.5	$11/2^{-}$	111.58 9/2	F					
233.2 5	2.8 3	728.4	23/2+	494.77 21/2	2+ [M1]		1.85 3	M1 R.M.E. (from branching ratios)=2.2 2. B(M1)=0.20 +4-3. B(M1)(W.u.)=0.112 +22-17. Ex=233.2 1. Ix=3.5.4 (1996Le01), placed from 312 level		
234.5 5	0.8 3	551.51	17/2-	316.80 17/2	2 ⁺ [E1]		0.0666 9	E1 R.M.E.= $-1.91 \times 10^{-3} + 23 - 30$. B(E1)= $0.20 \times 10^{-6} 5$. B(E1)(W.u.)= $8.2 \times 10^{-5} 21$.		
235.8 ^e 2	0.9 ^e 5	319.9	3/2-	83.90 5/2	+ [E1]		0.0658 9	E1 R.M.E. (from branching ratios)= $1.4 \times 10^{-5} 4$. B(E1)= $0.11 \times 10^{-6} +7-5$. B(E1)(W.u.)= $4.5 \times 10^{-5} +29-21$. I _{γ} : total intensity of 4 2 between the placements from 320 and 425 levels divided by evaluators from I γ (236 γ)/I γ (217 γ)= $0.233 9$ in the Adopted Levels, Gammas dataset using I χ (217 γ)= $3 8 3$		
235.8 ^e 2	3.1 ^e 16	424.90	13/2-	189.10 13/2	2 ⁺ [E1]		0.0658 9	I_{γ} : 4 2–0.9 5.		

	(Coulomb	excitation	2003Wu03 (continued)		
$\gamma(^{231}\text{Pa})$ (continued)										
E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	$\alpha^{\boldsymbol{b}}$	Comments		
236.58 8	54.7 15	788.06	21/2-	551.51	17/2-	[E2]	0.385 6	B(E2)(W.u.)=310 23. E γ =236.6 2, I γ =10.6 8 (1996Le01).		
240.9 ^e 5 240.9 ^e 5	0.8 ^e 3 3.2 ^e 3	317.78 728.4	3/2+ 23/2+	77.52 487.59	5/2 ⁻ 19/2 ⁺	[E1] [E2]	0.0626 <i>10</i> 0.362 <i>6</i>	$E_{\gamma}=240.3 \ I$, $I_{\gamma}=4.2 \ 4$ (1996Le01), placed from 318 level only. B(E2)(W.u.)=307 +60-69.		
249.6 [‡] 3		351.6	$5/2^{-}$	101.8	$3/2^{+}$					
249.8 1	100.7 25	785.56	23/2-	535.73	19/2-	[E2]	0.320 5	B(E2)(W.u.)=327 +19-20. E γ =249.9 1, I γ =21.3 10 (1996Le01).		
250 5 [‡] 3	&	351.6	$5/2^{-}$	101.26	$7/2^{+}$					
250.5 2	2.9 3	551.51	$17/2^{-}$	300.95	15/2+	[E1]	0.0573 8	E1 R.M.E. (from branching ratios)= 2.4×10^{-3} 7. B(E1)= 0.32×10^{-6} +21–16. B(E1)(W µ)= 1.3×10^{-5} +9–7		
252.1 5	1.8 6	788.06	21/2-	535.73	19/2-	[M1]	1.489 21	M1 R.M.E. (from branching ratios)=0.28 6. B(M1)=0.0036 +17-14. B(M1)(W,u)=0.0020 +10-8.		
253.2 4	3.2 4	311.65	5/2+	58.53	7/2-	[E1]	0.0559 8	B(E1)(W.u.)= $6.0 \times 10^{-5} + 44 - 33$. E γ =253.3 2, I γ =2.8 4 (1996Le01).		
253.2 2	2.3 5	424.90	$13/2^{-}$	171.70	$11/2^{+}$	[E1]	0.0559 8			
^x 258.9 3	0.4 2				-			$E\gamma = 258.8 \ 2, \ I\gamma = 2.7 \ 4 \ (1996 Le01).$		
265.5 10	0.3 2	273.7	$1/2^{+}$	8.8	$1/2^{-}$	[E1]	0.0502 9	$E\gamma = 264.6 \ 3, \ I\gamma = 0.9 \ 6 \ (1996Le01).$		
267.8 2	&	351.6	$5/2^{-}$	83.90	$5/2^{+}$			$E\gamma = 267.2 \ 3, \ I\gamma = 1.8 \ 3 \ (1996Le01).$		
269.1 1	19.5 6	1057.11	25/2-	788.06	21/2-	[E2]	0.251 4	B(E2)(W.u.)= $322 + 50 - 30$. E γ =268.8 3, I γ =3.5 6 (1996Le01).		
(270.4 ^{@a})		328.85	15/2-	58.53	7/2-	[E4]	12.2 3	B(E4)(W.u.)=396 +317-198. I γ =1.9×10 ⁻⁹ +16-9 deduced from B(E4)(W.u.)(270.4 γ)/B(E2)(W.u.)(160.13 γ)		
271.4 3	1.3 4	1057.11	25/2-	785.56	23/2-	[M1]	1.213 17	and $1\gamma(160.13)$. M1 R.M.E. (from branching ratios)=0.63 9. B(M1)=0.015 +5-4. B(M1)(W.u.)=0.0084 +28-23. Exercise 2.1 km = 2.6.5 (10061 c01)		
272 5 2	101	003.8	20/2+	721 38	25/2+	[E2]	0.241.4	$E\gamma = 2/1.5 2, 1\gamma = 3.6 5 (1990 Le01).$		
272.5 2	4.94	993.8 273.7	$\frac{29}{2}$ $\frac{1}{2^+}$	0.0	3/2-	[E2] [E1]	0.241 4	$E_{1} = 273.7.2$ $I_{2} = 2.5.5$ (1996LeO1)		
279.1.2	072	450 54	$9/2^{-}$	171.70	$\frac{3/2}{11/2^+}$	[E1]	0.0449 6	$E_{\gamma} = 278.7.4$, $F_{\gamma} = 2.5.5$ (1996) (
280.6.3	&	631.0	$(5/2^{-})$	351.6	5/2-	[21]	0.0119 0			
280.6 5	0.2 1	1355.5	$(3/2^{-})$ 29/2 ⁻	1074.29	$\frac{3}{2}}{27/2^{-}}$	[M1]	1.106 16	M1 R.M.E. (from branching ratios)=0.7 2. B(M1)=0.016 +11-8. B(M1)(W.u.)=0.009 +6-5.		
								B(M1)(W.u.)=0.0052 + 57 - 16 from matrix element.		
284 1 ^d 2	0.3^{d} 1	395 75	$7/2^{-}$	111 58	$9/2^{+}$	[F1]	0.0431.6	$E_{\nu} = 284.3.4$ Jy=0.8.2 (1996Le01) unplaced		
$284.1\frac{d}{2}$	0.3^{1}	604.0	$(3/2^{-})$	310.0	3/2-	[121] [141]	1 060 15	2/ 2010 /, 1/=0.02 (1//0L001), unpraced.		
288 7 2	280.8	1074.20	(3/2)	785 56	3/2 23/2-	[11]	0.201.3	I : uncertainty of 0.3 (or 1.1%) in 2003 Wu03 seems too low to be realistic		
200.7 2	20.0 0	1074.29	21/2	785.50	23/2	[22]	0.201 5	Evaluators assign 0.8 (or 3%), consistent with uncertainties for other strong γ rays.		
								D(E2)(W.U.)=324+27-37. E : level_energy_difference=280.78		
290.8 2	23.9 7	785.56	23/2-	494.77	21/2+	[E1]	0.0409 6	I_{γ} : uncertainty of 0.2 (or 0.8%) in 2003Wu03 seems too low to be realistic.		

 $^{231}_{91}$ Pa $_{140}$ -12

 $^{231}_{91}$ Pa $_{140}$ -12

From ENSDF

						Coulor	nb excitation	2003Wu03 (continued)
γ ⁽²³¹ Pa) (continued)								
${\rm E_{\gamma}}^{\dagger}$	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	$\alpha^{\boldsymbol{b}}$	Comments
								Evaluators assign 0.7 (or 3%), consistent with uncertainties for other strong γ
								rays. E1 \mathbf{p} M $\mathbf{p} = (7.00)(10^{-3} + 15 + 14 + \mathbf{p}(\mathbf{E}1) + 2.05)(10^{-6} + 0.05 + \mathbf{p}(\mathbf{E}1))(\mathbf{W}_{\mathbf{F}}) + 8.45(10^{-5})$
								E1 R.M.E.= $+7.02\times10^{-5}$ +15-11. B(E1)=2.05×10^{-5} +9-0. B(E1)(W.U.)=8.4×10^{-5} +4-3.
								E1 R.M.E. (from branching ratios)= 9.4×10^{-3} 4. B(E1)= 3.7×10^{-6} 3.
								$B(E1)(W.u.)=1.52\times10^{-4}$ 12.
290.8.3	122	1019.2	27/2+	728.4	23/2+	[F2]	0 196 3	$E\gamma = 290.7 \ 2, \ 1\gamma = 6.8 \ 6 \ (1996 Le01), \ placed from 1076 level.$
293.1 5	0.8 4	788.06	$21/2^{-}$	494.77	$\frac{23}{2}^{+}$	[E1]	0.0402 6	E1 R.M.E. (from branching ratios)= 1.9×10^{-3} 5. B(E1)= $0.16 \times 10^{-6} + 10-7$.
			1		1			B(E1)(W.u.)= $6.6 \times 10^{-5} + 41 - 29$.
294.5 ^d 2	0.6 ^d 2	395.75	$7/2^{-}$	101.26	$7/2^{+}$	[E1]	0.0398 6	Eγ=294.9 3, Iγ=0.9 2 (1996Le01), placed from 1351 level.
294.5 ^d 2	0.6^{d} 2	406.1	$(11/2^+)$	111.58	9/2+	[M1]	0.968 14	
298.0 5	0.4 2	1019.2	27/2+	721.38	25/2+	[M1]	0.937 13	M1 R.M.E. (from branching ratios)=1.5 4. B(M1)=0.08 +5-4. B(M1)(W.u.)=0.045 +28-23.
298.6 3	4.6 2	1355.5	29/2-	1057.11	25/2-	[E2]	0.181 3	B(E2)(W.u.)=330 + 31 - 114.
300.5 3	1.8 2	/88.06	21/2-	487.59	19/2+	[E1]	0.0381 5	E1 R.M.E. (from branching ratios)= 2.8×10^{-5} 8. B(E1)= 0.36×10^{-6} + $23-18$.
								$E_{\gamma}=300.5$ 3. $I_{\gamma}=1.0.2$ (1996Le01), unplaced.
308.9 <i>3</i>	1.4 2	317.78	$3/2^{+}$	8.8	$1/2^{-}$	[E1]	0.0358 5	$B(E1)(W.u.)=1.9\times10^{-5} + 17 - 11.$
								$E\gamma = 308.9 \ 2, \ I\gamma = 3.5 \ 4 \ (1996 Le01).$
311.6 3	1.5 2	311.65	5/2+	0.0	3/2-	[E1]	0.0351 5	$B(E1)(W.u.)=1.2\times10^{-5} + 12 - 6.$
311.9 [°] 2		395.75	$7/2^{-}$	83.90	$5/2^{+}$			$E\gamma = 511.9 \ 2, \ 1\gamma = 5.0 \ 4 \ (1990 Le01).$
311.9 [°] 2	&	631.9	$(5/2^{-})$	319.9	3/2-			
314.2 3	1.2 3	1307.8	33/2+	993.8	$29/2^+$	[E2]	0.1548 22	
317.6 3	0.8 <i>3</i>	317.78	$3/2^{+}$	0.0	$3/2^{-}$	[E1]	0.0337 5	$B(E1)(W.u.)=2.1\times10^{-5}$ 13. $B(E3)(W.u.)=25 + 16 - 9.$
272 0 7	706	1208 1	21/2-	1074 20	27/2-	[[2]]	0 1416 20	$E\gamma=317.8 2, I\gamma=3.5 4 (1996Le01).$
323.0 2	7.0 0	1396.1	51/2	1074.29	21/2		0.1410 20	$E_{\gamma} = 321.9.3$, $I_{\gamma} = 1.2.2$ (1996Le01).
326.2 3	1.0 2	677.8	$(7/2^{-})$	351.6	$5/2^{-}$	[M1]	0.730 10	
327.7 3	1.1 5	1683.2	33/2-	1355.5	29/2-	[E2]	0.1367 19	
328.7 3	1.2 5	1057.11	25/2-	728.4	$23/2^{+}$	[E1]	0.0313 5	E1 R.M.E. (from branching ratios)= 4.8×10^{-5} 11. B(E1)= 0.9×10^{-6} 4.
220.0.2	224	108 10	7/2+	77 50	5/2-	DE 11	0.0208 /	$B(E1)(W.u.)=3.7\times10^{-5}$ 16. $P(E1)(W.u.)=2.4\times10^{-5}$ 12.10
550.9 5	2.2 4	406.49	1/2	11.32	5/2		0.0308 4	$E_{\gamma}=330.9.3$, $I_{\gamma}=2.4.3$ (1996Le01).
331.4 2	&	520.5	$(15/2^{-})$	189.10	$13/2^{+}$			
333.5 2	4.5 5	391.93	9/2+	58.53	7/2-	[E1]	0.0303 4	$B(E1)(W.u.) = 1.9 \times 10^{-5} + 3 - 4.$
	0							Eγ=333.6 2, Iγ=3.8 4 (1996Le01).
338.3 [°] 3	æ	450.54	9/2-	111.58	9/2 ⁺			
338.3° 3 338.3° 3	082	734.0	$(9/2^{-})$ 31/2 ⁺	395.75	$\frac{1}{2^{-}}$	[E2]	0 1246 19	$E_{2} = -33833$ $I_{2} = -102$ (1006 I a01)
550.5 5	0.0 2	1337.3	J1/2	1019.2	21/2	[LLZ]	0.1240 10	$E_{\gamma} = 550.5 - 5, 1\gamma = 1.0 - 2 (1770 E C C C C C C C C C C C C C C C C C C $

From ENSDF

						Coulomb excitation		2003Wu03 (continued)	
γ ⁽²³¹ Pa) (continued)									
E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	$\alpha^{\boldsymbol{b}}$	Comments	
349 3 2	&	450 54	9/2-	101.26	7/2+				
349.7 3	2.3 3	542.7	$11/2^+$	193.02	9/2-	[E1]	0.0273 4	B(E1)(W.u.)= $4.1 \times 10^{-5} + 14 - 20$. Ey=349.5 2, Iy=3.5 4 (1996Le01).	
352.6 5 352.8 2	0.6 <i>4</i> 7.2 <i>4</i>	1660.4 1074.29	37/2 ⁺ 27/2 ⁻	1307.8 721.38	33/2 ⁺ 25/2 ⁺	[E2] [E1]	0.1107 <i>16</i> 0.0268 <i>4</i>	E_{γ} =352.9 3, I_{γ} =2.3 3 (1996Le01), unplaced. E_{γ} : level-energy difference=353.62.	
								E1 R.M.E.=+8.64×10 ⁻³ +9-148. B(E1)= 2.7×10^{-6} +0-10. B(E1)(W.u.)= 1.1×10^{-4} +0-4.	
								E1 R.M.E. (from branching ratios)= 0.0114 /. B(E1)= 4.6×10^{-6} + $6-5$. B(E1)(W.u.)= 1.9×10^{-4} + $3-2$.	
355.8.3	093	1754-1	35/2-	1308 1	31/2-	[F2]	0 1079 15	$E\gamma = 552.9$ 5, $1\gamma = 2.5$ 5 (1990Le01), unplaced. B(F2)(W µ) = 0.03 ± 76=0 or 0.03 ± 29=0	
356.2.2	2.8.5	525.14	$13/2^+$	168.72	$\frac{31/2}{11/2^{-1}}$	[E2]	0.0263 4	$B(E1)(W.u.) = 0.05 + 70^{-5} + 6 - 4$	
			,-			[]		$E\gamma=356.0 \ 3, \ I\gamma=3.3 \ 3 \ (1996Le01).$	
357.2 8	0.4 3	2040.4	$37/2^{-}$	1683.2	$33/2^{-}$	[E2]	0.1068 17		
365.4 2	2.0 3	717.1	15/2+	351.71	13/2-	[E1]	0.0249 4	B(E1)(W.u.)= 2.7×10^{-5} 6. E γ =365.4 2, I γ =3.9 4 (1996Le01).	
(367.0 ^{@a})		535.73	19/2-	168.72	11/2-	[E4]	2.49 4	B(E4)(W.u.)=428 +428-238. I γ =0.19×10 ⁻⁷ +19-9 deduced from B(E4)(W.u.)(367.0 γ)/B(E2)(W.u.)(206.9 γ) and I γ (206.9 γ).	
376.4 2	2.9 3	705.2	17/2+	328.85	15/2-	[E1]	0.0234 3	B(E1)(W.u.)= $3.5 \times 10^{-5} + 11 - 6$. Ey=376.4 2, Iy=2.6 3 (1996Le01).	
385.1 3	0.5 2	2139.3	39/2-	1754.1	$35/2^{-}$	[E2]	0.0868 12	$E\gamma = 385.0 5$, $I\gamma = 0.5 2$ (1996Le01).	
(391.9 ^{@a})		391.93	9/2+	0.0	3/2-	[E3]	0.396 6	B(E3)(W.u.)=7.6 38. I γ =3.1×10 ⁻⁵ +27-18 deduced from B(E3)(W.u.)(391.9 γ)/B(E1)(W.u.)(333.5 γ) and I γ (333.5).	
394.5 ^d 4	1.6 <mark>d</mark> 3	930.2	$21/2^{+}$	535.73	19/2-	[E1]	0.0212 3	$E\gamma = 394.4$ 3, $I\gamma = 1.6$ 2 (1996Le01), placed from 930 level only.	
394.5 ^d 4	1.6 ^d 3 &	946.0	19/2+	551.51	17/2-	[E1]	0.0212 3	B(E1)(W.u.)= $4.4 \times 10^{-5} + 9 - 12$.	
404.2 2	3.2 4	1398.1	31/2-	993.8	29/2+	[E1]	0.0201 3	E1 R.M.E. (from branching ratios)=0.0178 <i>13</i> . B(E1)= $9.9 \times 10^{-6} + 15 - 14$. B(E1)(Wu)= $4.1 \times 10^{-4} 6$	
408.1 <i>3</i>	0.9 3	1196.2	$23/2^{+}$	788.06	$21/2^{-}$	[E1]	0.0197 3		
(408.5 ^{@a})		408.49	7/2+	0.0	3/2-	[E3]	0.340 5	B(E3)(W.u.)=6 4. I γ =0.9×10 ⁻⁷ +33-7 deduced from B(E3)(W.u.)(408.5 γ)/B(E1)(W.u.)(330.9 γ) and I γ (330.9 γ).	
^x 415.5 2	3.1 4							-/ (//-	
420.7 <i>2</i> <i>x</i> 424.6 <i>3</i>	2.6 <i>4</i> 1.3 2	604.0	(3/2 ⁻)	183.4	5/2+	[E1]	0.0185 3		
446.9 <i>5</i>	0.3 1	1754.1	35/2-	1307.8	33/2+	[E1]	0.01636 23	E _γ : 445.9 in Fig. 4 of 2003Wu03. E1 R.M.E. (from branching ratios)=0.018 <i>4</i> . B(E1)=9×10 ⁻⁶ <i>4</i> . B(E1)(W.u.)= 3.7×10^{-4} <i>16</i> .	
(456.7 [@] <i>a</i>)		785.56	23/2-	328.85	15/2-	[E4]	0.903 13	I _{γ} : 2.7×10 ⁻⁸ 20 deduced by evaluators from B(E2)(W.u.)(249.8 γ)/B(E4)(W.u.)(456.7 γ).	

Coulomb excitation 2003Wu03 (continued)										
$\gamma(^{231}\text{Pa})$ (continued)										
${\rm E_{\gamma}}^{\dagger}$	Iγ	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult.	α b	Comments		
								B(E4)(W.u.)=475 +370-317. Upper limit of B(E4)(W.u.) is higher than		
^x 458.5 4	0.7 3							expected from systematics (199951128).		
^x 460.7 4	0.9 3									
(465.2 ^{@u})		542.7	11/2+	77.52	5/2-	[E3]	0.215 3	B(E3)(W.u.)=21 8. I γ =0.60×10 ⁻⁴ 33 deduced from B(E3)(W.u.)(465.2 γ)/B(E1)(W.u.)(349.7 γ) and I γ (349.7 γ).		
^x 474.1 3	0.0 3									
479.0 6	0.5 3	2139.3	39/2-	1660.4	37/2+	[E1]	0.01422 20	E1 R.M.E. (from branching ratios)= $0.025 \ 9. B(E1)=1.6\times10^{-3} + 13-10. B(E1)(W.u.)=6.6\times10^{-4} + 54-41.$		
^x 486.2 3	1.2 2									
x502.5 3	0.6 2									
^x 505.6 3	0.6 2									
(524.1 ^{@a})	2.4×10 ⁻⁴ 12	717.1	15/2+	193.02	9/2-	[E3]	0.145 2	B(E3)(W.u.)=22 +24-8. I _{γ} : 0.00024 <i>12</i> deduced by evaluators from B(E3)(W.u.)(524 1 ₂)/B(E1)(W.u.)(365 4 ₂)		
^x 552.0 3	0.7 2									
x554.1 3	1.0 2									
^x 564.1 2 ^x 606 3 2	0.4 2									
x621.7 4	0.4 2									
^x 645.0 2	0.7 2									
$x_{651.04}$	0.5 2									
$x_{683,3,2}^{x_{683,3,2}}$	0.72									
x687.5 2	1.1 2									
 [†] Eγ values given in Figs. 4 and 7 of 2003Wu03 are level-energy differences. The evaluators have quoted all Eγ data from authors' Tables 1 and 2, except for some doublets where values have been taken from the level-scheme Figs. 4 and 7. [‡] From Fig. 7 in 2003Wu03; composite member for the doublet in Table 2: 250.2 3. [#] From Fig. 7 in 2003Wu03; for the doublet in Table 2 of 2003Wu03: composite Eγ=81.6 3, Iγ=1.7 3. [@] From level-energy difference, γ implied from reported matrix elements, but not observed. ^{&} In Coul. ex. work of 2003Wu03, intensity could not be determined due to contribution from a closely spaced strong line. The γ ray is seen in (p,2nγ), and also expected in Coul. ex. ^a This transition is not included in the Adopted Levels, Gammas dataset. ^b Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified. ^c Multiply placed. 										

From ENSDF

 ${}^{231}_{91}Pa_{140}$ -15

Coulomb excitation 2003Wu03 (continued)

 γ (²³¹Pa) (continued)

^d Multiply placed with undivided intensity.

^{*e*} Multiply placed with intensity suitably divided. ^{*f*} Placement of transition in the level scheme is uncertain. ^{*x*} γ ray not placed in level scheme.

²³¹₉₁Pa₁₄₀

 $^{231}_{91}\mathrm{Pa}_{140}$

 $^{231}_{91}{\rm Pa}_{140}$

Coulomb excitation 2003Wu03 (continued)

²³¹₉₁Pa₁₄₀