Adopted Levels, Gammas

History

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, Jagdish K. Tuli, and Edgardo Browne	NDS 185, 560 (2022)	31-Aug-2022

 $Q(\beta^{-}) = -381.6\ 20;\ S(n) = 6821\ 3;\ S(p) = 4727.1\ 15;\ Q(\alpha) = 5149.9\ 8$ 2021Wa16

S(2n)=12615.1 28, S(2p)=11844 12 (2021Wa16).

First identification of ²³¹Pa nuclide is generally accredited to L. Meitner, Zeitschrift fur Elektrochemie und angewandte physikalische Chemie 24, 11-12, 169 (1918), starting with pitchblende without uranium or radium, and isolating both the mother isotope ²³¹Pa and its α-daughter ²²⁷Ac. 2013Fr03 mention the identification of ²³¹Pa, as a parent of ²²⁷Ac, to O. Hahn and L. Meitner, Z. Physik 19, 208 (1918), where half-life was estimated to be between 1200 y and 180,000 y; and also to an earlier indirect evidence of ²³¹Pa in a paper by F. Soddy and J.A. Cranston, Proc. Roy. Soc. (London), A94, 384 (1918), where half-life was estimated to be >10,000 y. 1931Cu01 evaluation adopted half-life of 32,000 y from 1930Gr01, with the citation of the following earlier references: A.v. Grosse, Ber. Chem. Ges. 61, 233 (1928); Naturwiss. 15, 766 (1927); Nature 120, 621 (1927); O. Hahn and A.v. Grosse, Z. Physik 48, 600 (1928), T_{1/2}=20,200 y; O. Hahn and E. Walling, Naturwiss. 15, 803 (1928); E. Walling, Dissertation (Berlin, 1928), T_{1/2}=20.760 y. Most current half-life measurement of 32,570 y *130* is reported by 2020Je01, a result from collaboration of independent measurements at six different laboratories.

Application of ²³¹Pa as described in N.E. Holden et al., Pure Appl. Chem. 90, 1833 (2018),"²³¹Pa is a natural radiogenic isotope produced by alpha decay of ²³⁵U to ²³¹Th, followed by beta emission to form ²³¹Pa. Although its behavior in the environment as a transient member of the U-series decay chain may be complex, measurements and modeling of ²³¹Pa in relation to the isotopes of uranium and thorium have been used in a variety of geochronologic applications on time scales of 103 to 105 years. Studies include movement of water masses and particles in the oceans, rates of magma melting and movement beneath volcanoes, and ages of carbonate mineral deposits, including corals, in relation to climate change".

Theoretical calculations: consult the NSR database (www.nndc.bnl.gov/nsr) for 115 primary references, 97 dealing with half-lives of α and cluster decays and other aspects of radioactive decays, and 19 with nuclear structure calculations. Some of these references are listed in 'document' records in this dataset, which can be accessed through on-line ENSDF database at www.nndc.bnl.gov/ensdf/. Additional information 1.

²³¹Pa Levels

²³¹Pa presents K=1/2 rotational bands with opposite parity and decoupling parameters with very close absolute values, as well as enhanced E1 γ -ray transitions between parity-doublet band levels. These are typical features of nuclei with large stable octupole deformations. However, ²³¹Pa has a small β_3 deformation parameter of 0.02. Consequently, the characteristic features mentioned before have been explained by using large octupole-phonon components in the low-lying states. Extensive calculations of level energies and B(E1) reduced transition probabilities using the quasiparticle-plus-phonon model (QPM) have produced acceptable agreement between theory and experiment (1996Le01).

The even-parity states in ²³¹Pa are members of rotational bands that are strongly mixed by the Coriolis interaction. This mixing affects level energies as well as α , β , and γ -ray transition probabilities. Comprehensive Coriolis calculations have explained distortions in rotational band level spacings (which includes the unusual inversion of the 84⁻ (5/2⁺), 102- (3/2⁺), and 101-keV (7/2⁺) states in the 3/2[651] rotational band). These calculations also produced values for γ -ray, β^- (²³¹Th β^- decay), and α -particle (²³⁵Np α decay) transition probabilities between these states (1975Ho14, 1973Br12). The agreement between experimental results and calculated values have confirmed the rotational band assignments presented here. Band assignments are from Coulomb excitation, (p,2n γ), (α ,t), and ²³¹U ε decay (2003Wu03,1996Le01,1975Er01,1973Br12).

Cross Reference (XREF) Flags

A	231 Th β^{-} decay (25.57 h)	F	231 Pa(p,p')
В	²³¹ U ε decay (4.2 d)	G	231 Pa(d,d')
С	²³⁵ Np α decay (396.1 d)	Н	Coulomb excitation
D	230 Th(α ,t)	Ι	232 Th(p,2n γ)
Ε	²³¹ Pa(γ,γ):Mossbauer		

Continued on next page (footnotes at end of table)

²³¹Pa Levels (continued)

E(level) [†]	J ^{π#}	T _{1/2} ‡	XREF	Comments
0.0@	3/2-	32570 y <i>130</i>	ABCDEFGHI	%α=100; %SF≤3×10 ⁻¹⁰ (1952Se67) μ=1.99 2 (1961Ax01,2019StZV) Q=-1.72 5 (1978Fr28,2021StZZ) % ²⁴ Ne/%α=13.4×10 ⁻¹² 17 track-recording glass detector used by 1992Pr05. Others: 1985Sa40, 1986Tr10. % ²⁴ Ne/% ²³ F≈1347. One track identified by 1992Pr05 as probably ²³ F was observed, % ²³ F/%α=9.9×10 ⁻¹⁵ (1995Ar33). J ^π : spin from electron paramagnetic resonance (1961Ax01,1960Ky01); and optical spectroscopy (1961Ri06,1934Sc04). Parity from 183.5γ E1 from
				J^{π} =5/2 ⁺ . The following suggests a 1/2[530] Nilsson orbital configuration: 1) experimental decoupling parameter a(exp.)=-1.5 compares with theoretical value a(theory)=-1.8 (1977Ch27). 2) Same ground state Nilsson configuration in ²³³ Pa. 3) ²³⁰ Th(α ,t) experimental spectroscopic factors are consistent with a 1/2[530] configuration assignment. 4) μ =1.99 2 (2019StZV) agrees with theoretical value of 2.25 for 1/2-1/2[530] Nilsson orbital (1982Li02]. μ : electromagnetic double resonance (ENDOR) (1961Ax01); value of 2.01 2 in 1961Ax01 is given as 1.99 2 in 2019StZV evaluation.
				Q: estimated by 1978Fr28 from B(E2) for 58.6 level, not a measured guadrupole moment.
				quadrupole moment. $T_{1/2}$: from 2020Je01, determination of average (by power-moderated mean (PMM) method of S. Pomme and J.D. Keightley, Metrologia, 52, S17-26 (2015)) ²³¹ Pa activity concentration measured independently at six metrology laboratories using a variety of methods: $4\pi \alpha$ liquid scintillation counting, triple to double coincidence ratio (TDCR), CIEMAT/NIST, $4\pi \alpha$ liquid scintillation- γ (NaI) coincidence counting, 4π (PC) $\alpha\gamma$ -coin counting, α counting at a defined solid angle at the following labs: NPL-Teddington, JRC-Geel, LNE-LNHB-Gif-sur-Yvette, NIM-Beijing, NRC-Ottawa, and PTB-Braunschweig; while atom concentration of the material was measured at LLNL-Livermore by isotope dilution mass spectrometry (IDMS), using ²³³ Pa as a tracer. Others: 32765 y <i>110</i> (1969Ro33, calorimetry method, value of 32713 y <i>110</i> increased by 52 y due to change in Q(α) from 5140 to 5149.9 8); 32340 y <i>115</i> (1968Br04, radiometric method, with quoted uncertainty of 230 y at 95% confidence level); 32647 y <i>260</i> (1961Ki05, calorimetry method, value of 32480 y <i>260</i> increased by 167 y, due to change in the Adopted decay scheme); 34300 y <i>300</i> (1949Va02, radiometric method); 32800 y (cited by 1968Br04 from unpublished work of J. Fleggenheimer and A.G. Maddock); 32000 y <i>3200</i> (cited by 2020Je01 from measurement by A.v. Grosse, Naturwiss. 20, 505 (1932)). Weighted average of values from 2020Je01, 1969Ro33, 1968Br04 and 1961Ki05 is 32570 y <i>100</i> , while PMM method (used in 2020Je01) gives 32570 y <i>98</i> .
9 183 [@] 18	1/2-		ARCD FOHT	$T_{1/2}(SF) \ge 1.1 \times 10^{10}$ y (1952Se67) (11 fission events observed).
58.5696 [@] 24	7/2-	274 ps 10	ABCD FGHI	$T_{1/2}$: from β^- decay, (25.6 γ)(ce(L) for 58.6 γ)(t) (1975Ho14). Other: 281 ps 17, deduced from B(E2) in Coulomb excitation.
$77.692^{\textcircled{0}}$ 17	$5/2^{-}$	45.1 no. 13	AB D FGHI	O = (0.7.2)(1078 Er 28.20218 r77)
04.2132** 20	572.	43.1 ns 13	ADC E HI	$Q_{-+0.72}$ (1976F126,2021S122) $T_{1/2}$: from β^- decay, ($\beta(84\gamma \text{ ce})(t)$) (1975Ho14). Others: 43.7 ns 5 (1972Mc29, a time interval distribution method); 41 ns 4 (1955St88, (25.6 γ) $\beta(t)$ and (84.2 γ) $\beta(t)$). Q: Mossbauer effect (1978Fr28), deduced from measured Q(84.2 level)/Q(g.s.)=-0.4 <i>1</i> , and estimated Q(g.s.)=-1.72 5.

 J^{π} : 25.6 γ E1 to 7/2⁻, 84.2 γ E1 to 3/2⁻. HF=3.1 from ²³⁵Np α decay suggests strong mixing with 5/2⁺, 5/2[642] level at 183.5 keV.

Continued on next page (footnotes at end of table)

²³¹Pa Levels (continued)

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$	XREF	Comments
101.408 ^{<i>a</i>} 4	$7/2^{+}$	0.7 ns 2	ABCd HI	XREF: d(105).
102.2685 ^a 21	3/2+	0.7 ns 2	ABCd HI	T _{1/2} : combined for 101.4+102.3 levels (1975Ho14, β^- decay). XREF: d(105).
111.648 ^a 12	$(9/2^+)$		A CD FGHI	J ^{π} : 102.3 γ (E1) to 3/2 ⁻ , 18.1 γ M1+E2 to 5/2 ⁺ , 93.0 γ to 1/2 ⁻ . T _{1/2} : combined for 101.4+102.3 levels (1975Ho14, β^- decay). XREF: D(117)G(109.2).
134 5	$(11/2^+)$		D	
168.77 [@] 5	11/2-	154 ps 12	CD FGHI	XREF: D(172). T _{1/2} : from Coulomb excitation, deduced by evaluators from B(E2) and γ branching ratio for 110.2 γ .
171.74 ^{<i>a</i>} 11	$(11/2^+)$		HI	
174.160 ^b 5	(5/2 ⁻)		ABC HI	XREF: C(?). J^{π} : 89.9 γ (E1) to 5/2 ⁺ , 165.0 γ to 1/2 ⁻ , 115.6 γ to 7/2 ⁻ , 72.8 γ to 7/2 ⁺ .
183.4954 ^{<i>c</i>} 25	5/2+	≤0.19 ns	ABC HI	J ^π : Favored α decay (HF=2.9) from $5/2^+$, $\pi 5/2$ [642] parent ²³⁵ Np strongly suggests $5/2^+$, $\pi 5/2$ [642] for 183.5 level in ²³¹ Pa. T _{1/2} : from β ⁻ decay, β(ce(M) for 81.2γ+82.1γ)(t) (1975Ho14).
189.14 ^{<i>a</i>} 8	$(13/2^+)$		D HI	·/- / ·····
193.21 [@] 11	(9/2-)	13.6 ps 19	FGHI	T _{1/2} : from Coulomb excitation, deduced by evaluators from B(E2) and γ branching ratio for 115.5 γ .
218.244 ^b 13 247.320 ^c 6	(7/2 ⁻) 7/2 ⁺		A D HI A C HI	XREF: D(214).
273.717 ^{&} 15	(1/2 ⁺)		B FGH	J^{π} : γ rays to $1/2^-$, $3/2^-$ and $3/2^+$. Upper limits of γ -intensities and ratio of intensities of [E1] transitions to the ground-state band support spin of $1/2^+$. With this level assigned as the bandhead, energies of the higher members of the rotational band are in agreement.
274.96 ^b 17 287 3	(9/2 ⁻)		D HI D	XREF: D(272). In (α ,t), this level was assigned as bandhead of π 1/2[400] band, but in later studies using γ -ray data from reactions, a 273.7 level was assigned as bandhead of π 1/2[400]+ π 1/2[660] mixed configuration. It should be noted that π 1/2[400] band assignment to two levels in (α ,t) seemed tentative, based only on level energies.
296.6 4			FG	
300.984 11	$(15/2^+)$	82 ps 20	Н	$T_{1/2}$: from Coulomb excitation, deduced by evaluators from B(E2) and γ branching ratio for 129.2.
304.7° 3	$(9/2^+)$	$0.12 m_{\odot} + 17.6$	СНІ	T is from Coulomb arcitotion, deduced by avaluators from D(E1)
511.76* 17	(3/2)	0.12 lis +17 = 0	GI	and γ branching ratio for 253.3 γ .
316.83 ^{<i>a</i>} 9	(17/2+)	77 ps +27–18	Н	T _{1/2} : from Coulomb excitation, deduced by evaluators from B(E2) and γ branching ratio for 127.7 γ .
317.94 ^{&} 4	(3/2+)	0.07 ns +11-3	AB D FGHI	T _{1/2} : from Coulomb excitation, deduced by evaluators from B(E1) and γ branching ratio for 308.8 γ .
320.208 ^{<i>d</i>} 20	3/2-		AB HI	J ^{π} : 311.0 γ M1+E2 to 1/2 ⁻ ; $\gamma\gamma(\theta)$ in ²³¹ Th β^{-} decay (1975Ho14).
328.88 [@] 7	(15/2 ⁻)	74 ps 7	FGHI	T _{1/2} : from Coulomb excitation, deduced by evaluators from B(E2) and γ branching ratio for 160.1 γ .
344.55 ^b _19	$(11/2^{-})$		D HI	XREF: D(340).
351.69 [@] 11	(13/2 ⁻)	10 ps +11-7	FGHI	T _{1/2} : from Coulomb excitation, deduced by evaluators from B(E2) and γ branching ratio for 158.5 γ .
351.85 ^d 4	$(5/2^{-})$		A HI	
391.92 ^{&} 17	$(9/2^+)$	94 ps +58-39	D FGHI	XREF: D(385)F(395.7).

Continued on next page (footnotes at end of table)

²³¹Pa Levels (continued)

E(level) [†]	J ^{π#}	$T_{1/2}$	XREF	Comments		
				T _{1/2} : from Coulomb excitation, deduced by evaluators from B(E1) and γ branching ratio for 333.5 γ .		
395.92 ^d 12	$(7/2^{-})$		D HI	XREF: D(393).		
406.14 ^C 19	$(11/2^+)$		HI			
408.68 ^{&} 19	(7/2+)	0.05 ns +10-3	FGHI	XREF: F(411.4)G(411.1). $T_{1/2}$: from Coulomb excitation, deduced by evaluators from B(E1) and γ branching ratio for 330.9 γ .		
424.94 ^b 20 443.0 5	(13/2 ⁻)		FGHI D FG	XREF: F(422.7).		
450.62^{d} 14 487.62^{a} 13	(9/2 ⁻) (19/2 ⁺)	21 ps 4	D HI H	XREF: D(455). $T_{1/2}$: from Coulomb excitation, deduced by evaluators from B(E2) and γ branching ratio for 186 for		
494.80 ^a 10	$(21/2^+)$	31 ps 11	Н	$T_{1/2}$: from Coulomb excitation, deduced by evaluators from B(E2) and γ branching ratio for 177.96 γ .		
507 <i>3</i> 513.5 <i>12</i>			D D G	XREF: D(518).		
520.54 ^b 22	$(15/2^{-})$		HI			
525.35 ^{x} 14	$(13/2^+)$	54 ps +33–25	HI	$T_{1/2}$: from Coulomb excitation, deduced by evaluators from B(E1) and γ branching ratio for 356.3 γ .		
535.77 [@] 8	(19/2 ⁻)	30.4 ps 21	GHI	$T_{1/2}$: from Coulomb excitation, deduced by evaluators from B(E2) and γ branching ratio for 206.88 γ .		
543.07 ^{&} 19	$(11/2^+)$	43 ps +78-24	HI	T _{1/2} : from Coulomb excitation, deduced by evaluators from B(E1) and γ branching ratio for 349.5 γ .		
551.50 [@] 11	(17/2 ⁻)	23.4 ps 15	GHI	$T_{1/2}$: from Coulomb excitation, deduced by evaluators from B(E2) and γ branching ratio for 199.8 γ .		
567.5 5 583.5 8			D G D G	XREF: D(575). XREF: D(590).		
604.25 ^e 15	(3/2 ⁻)		D HI	J^{π} : γ to $5/2^+$; possible γ to $3/2^-$. This level as bandhead of $\pi 3/2[521]$ was proposed in (α ,t) based on a comparison of experimental spectroscopic factor with DWBA calculation for $7/2^-$ member at 676 keV.		
632.21 ^e 17	(5/2-)		D GHI	J^{π} : γ rays to (5/2 ⁻) and 3/2 ⁻ ; band member.		
678.1 ^e 3	(7/2 ⁻)		D HI	J^{π} : γ to (5/2 ⁻); comparison of experimental spectroscopic factor with DWBA analysis in (α ,t).		
700 3	(17/2+)	24 mg 14	ע	$T_{\rm eff}$ from Coulomb arcitetion, deduced by avaluators from $D(E1)$ and c		
705.54 10	(17/2)	54 ps 14	п	$\Gamma_{1/2}$. from Coulomb excitation, deduced by evaluators from B(E1) and γ branching ratio for 376.4 γ .		
716.74 [∞] <i>19</i>	(15/2+)	37 ps 13	Н	$T_{1/2}$: from Coulomb excitation, deduced by evaluators from B(E1) and γ branching ratio for 365.4 γ .		
721.41 ^{<i>a</i>} 13	(25/2+)	30 ps +30–6	Н	$T_{1/2}$: from Coulomb excitation, deduced by evaluators from B(E2) for 226.6 γ .		
728.38 ^{<i>a</i>} 24	$(23/2^+)$	6.9 ps 15	Н	$T_{1/2}$: from Coulomb excitation, deduced by evaluators from B(E2) and γ branching ratio for 240.9 γ .		
734.2 ^e 4 750 2	(9/2 ⁻)		HI D	J^{π} : γ to $(7/2^{-})$; band member.		
785.59 [@] 11	(23/2 ⁻)	13.5 ps 8	gHI	XREF: g(788.1). $T_{1/2}$: from Coulomb excitation, deduced by evaluators from B(E2) and γ branching ratio for 249.8 γ .		
788.05 [@] 12	(21/2 ⁻)	19.3 ps 16	gHI	XREF: g(788.1). $T_{1/2}$: from Coulomb excitation, deduced by evaluators from B(E2) and γ branching ratio for 236.58 γ .		
801 ^e 3	(11/2 ⁻)		D			

²³¹Pa Levels (continued)

E(level) [†]	$J^{\pi \#}$	$T_{1/2}$ ‡	XREF	Comments
815 3			D	
857.3 10			G	
874.0 6			G	
901.6 8			G	
917.6 12			G	
929.55 ^x 23	$(21/2^+)$		HI	
946.0 ^{&} 5	$(19/2^+)$		GH	
967.9 6			G	
993.88 ^{<i>a</i>} 21	$(29/2^+)$		Н	
1019.2 ^{<i>a</i>} 4	$(27/2^+)$	6 ps +11-4	GH	$T_{1/2}$: from Coulomb excitation, deduced by evaluators from B(M1) and γ branching ratio for 298.0 γ .
1048.4 6			G	
1057.11 [@] 14	(25/2 ⁻)	10.2 ps 18	Н	$T_{1/2}$: from Coulomb excitation, deduced by evaluators from B(E2) and γ branching ratio for 269.1 γ .
1074.31 [@] 17	(27/2 ⁻)	6.2 ps +13-9	Н	$T_{1/2}$: from Coulomb excitation, deduced by evaluators from B(E2) and γ branching ratio for 288.7 γ .
1086.4 6			G	. ,
1136.8 5			G	
1158.5 10			G	
1190.0 15			G	
1196.2 ^{&} 4	$(23/2^+)$		Н	
1221.3 8			G	
1307.8 ^{<i>a</i>} 4	$(33/2^+)$		Н	
1355.5 ^{^w} 3	(29/2 ⁻)	6.8 ps +7-17	Н	$T_{1/2}$: from Coulomb excitation, deduced by evaluators from B(E2) and γ branching ratio for 298.6 γ .
1357.5 ^a 5	$(31/2^+)$		Н	
1398.15 [@] 22	(31/2 ⁻)	3.1 ps +11-6	Н	$T_{1/2}$: from Coulomb excitation, deduced by evaluators from B(E2) and γ branching ratio for 323.8 γ .
1660.4 ^{<i>a</i>} 5	$(37/2^+)$		Н	
1683.2 [@] 5	$(33/2^{-})$		Н	
1754.2 [@] 4	(35/2 ⁻)	1.2 ps +19-7	Н	$T_{1/2}$: from Coulomb excitation, deduced by evaluators from B(E1) and γ branching ratio for 446.9 γ .
2040.4 [@] 9	$(37/2^{-})$		н	
2139.3 [@] 5	(39/2 ⁻)	1.2 ps +32-8	Н	T _{1/2} : from Coulomb excitation, deduced by evaluators from B(E1) and γ branching ratio for 479.0 γ .

[†] From least-squares fit to $E\gamma$ data. Reduced $\chi^2=0.79$, with only two $E\gamma$ values deviating slightly, between 2 and 3 σ . [‡] From ²³¹Th β^- decay, unless otherwise specified.

[#] From γ -ray multipolarities and rotational band structures. Individual arguments for spin and parity assignments are given for rotational bandheads. ^(a) Band(A): $\pi 1/2[530]$.

- [&] Band(B): $\pi 1/2[400] + \pi 1/2[660]$.
- ^{*a*} Band(C): *π*3/2[651].

^b Band(D): π5/2[512].

^c Band(E): $\pi 5/2[642]$.

^d Band(F): $\pi 3/2[532]$.

^{*e*} Band(G): *π*3/2[521].

$\gamma(^{231}\text{Pa})$

Gamma-ray transition probabilities are from Coulomb excitation, unless otherwise indicated.

6

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. ^{†#}	δ^{\dagger}	α^{c}	$I_{(\gamma+ce)}$	Comments
9.183	1/2-	(9.183)		0.0	3/2-				100	B(E2)(W.u.)=333 +38-36 E _w : from level-energy difference.
58.5696	7/2-	58.5700 24	100	0.0	3/2-	E2		155.5 22		B(E2)(W.u.)=227 9 α (L)=113.6 <i>16</i> ; α (M)=31.3 5 α (N)=8.43 <i>12</i> ; α (O)=1.90 <i>3</i> ; α (P)=0.306 5; α (Q)=0.000818 <i>12</i> B(E2)(W.u.) from T _{1/2} =274 ps <i>10</i> . Other: 222 + <i>13</i> - <i>11</i> from Coulomb excitation.
77.692	5/2-	(19.1)		58.5696	7/2-					
		68.5 1	100 5	9.183	1/2-	E2		73.3 10		B(E2)(W.u.)=127 +52-28 α (L)=53.5 9; α (M)=14.76 24 α (N)=3.98 7; α (O)=0.898 14; α (P)=0.1448 23; α (Q)=0.000423 7
		77.6 [‡] 2	72 12	0.0	3/2-	[M1+E2]		25 16		B(E2)(W.u.)=71 6
84.2152	$5/2^{+}$	25.65 2	202 3	58.5696	$7/2^{-}$	E1		4.37 6		$B(E1)(W.u.)=3.37\times10^{-5}$ 13
										α (L)=3.26 5; α (M)=0.843 <i>12</i> α (N)=0.219 4; α (O)=0.0471 7; α (P)=0.00673 <i>10</i> ; α (Q)=0.000196 3 B(E1)(W.u.) from T _{1/2} =45.1 ns <i>13</i> and γ -branching ratio. Other: $3.1 \times 10^{-5} + 5 - 2$ from Coulomb excitation.
		84.2140 22	100	0.0	3/2-	E1		2.17 21		B(E1)(W.u.)=4.45×10 ⁻⁷ +28-25 α (L)=0.1434 20; α (M)=0.0350 5 α (N)=0.00925 13; α (O)=0.00212 3; α (P)=0.000359 5; α (Q)=1.694×10 ⁻⁵ 24 α : experimental value of anomalous conversion coefficient (1975Ho14). B(E1)(W.u.) from T _{1/2} =45.1 ns 13 and γ -branching ratio. Other: 9.1×10 ⁻⁷ +39-66 from Coulomb excitation.
101.408	7/2+	17.195 21	46×10 ¹ 16	84.2152	5/2+	(M1)		166 3		α (L)=1.4; α (M)=122.6 <i>18</i> ; α (N)=32.7 <i>5</i> ; α (O)=7.75 <i>12</i> ; α (P)=1.505 22; α (O)=0.144 2
		42.81 5	100.0 23	58.5696	7/2-	[E1]		1.136 16		$\alpha(C) = 0.144 2$ $\alpha(L) = 0.854 13; \ \alpha(M) = 0.213 4$ $\alpha(N) = 0.0558 9; \ \alpha(O) = 0.01240 19;$ $\alpha(P) = 0.00194 3; \ \alpha(O) = 7.08 \times 10^{-5} 11$
102.2685	3/2+	18.055 <i>18</i>	21 8	84.2152	5/2+	M1+E2	0.040 +18-0	218 28		$\alpha(L)=45\ 15;\ \alpha(M)=128\ 8$ $\alpha(N)=34\ 2;\ \alpha(O)=8.1\ 4;\ \alpha(P)=1.55\ 5;$ $\alpha(O)=0\ 124\ J$
		93.02 4	10.6 12	9.183	$1/2^{-}$	(E1)		0.1463 21		$\alpha(\Sigma) = 0.1103 \ 16; \ \alpha(M) = 0.0269 \ 4$

 $^{231}_{91}{
m Pa}_{140}$ -6

				<u>)</u>					
						$\gamma(^{231}$	Pa) (conti	nued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. ^{†#}	δ^{\dagger}	α ^C	Comments
102.2685	3/2+	102.2700 24	100 3	0.0	3/2-	(E1)		0.1141 16	$\begin{aligned} \alpha(N) = 0.00711 \ 10; \ \alpha(O) = 0.001633 \ 23; \ \alpha(P) = 0.000279 \ 4; \\ \alpha(Q) = 1.363 \times 10^{-5} \ 20 \\ \alpha(L) = 0.0860 \ 12; \ \alpha(M) = 0.0210 \ 3 \\ \alpha(N) = 0.00554 \ 8; \ \alpha(O) = 0.001276 \ 18; \ \alpha(P) = 0.000220 \ 3; \end{aligned}$
111.648	(9/2+)	53.2 ^{<i>a</i>} 8	100 ^a	58.5696	7/2-	[E1]		0.64 3	$\alpha(Q)=1.10 \times 10^{-5} I_{6}$ $\alpha(L)=0.483 21; \ \alpha(M)=0.119 6$ $\alpha(N)=0.0313 I_{4}; \ \alpha(O)=0.0070 3; \ \alpha(P)=0.00114 5;$ $\alpha(Q)=4.53 \times 10^{-5} I_{6}$
168.77	11/2-	57.2 ^{<i>a</i>} 2	7.8 ^{<i>a</i>} 7	111.648	(9/2+)	[E1]		0.529 8	B(E1)(W.u.)= $5.5 \times 10^{-5} + 14 - 9$ α (L)= $0.398 6$; α (M)= $0.0982 14$ α (N)= $0.0258 4$; α (O)= $0.00583 9$; α (P)= $0.000950 14$; α (O)= $3.89 \times 10^{-5} 6$
		110.20 [‡] 5	100 ^{<i>a</i>} 5	58.5696	7/2-	(E2) [@]		7.80 11	B(E2)(W.u.)=301 24 α (L)=5.70 9; α (M)=1.573 23 α (N)=0.424 7; α (O)=0.0960 14; α (P)=0.01559 23; α (O)=6.92×10 ⁻⁵ 10
171.74	$(11/2^+)$	$60.3^{a} 3$ 70.4 ^a 3	$100^{a} 22$	111.648 101.408	$(9/2^+)$ $7/2^+$	[M1] [F2]		18.3 <i>4</i> 64 3 <i>1</i> 6	B(M1)(W.u.)=0.0047 + 19 - 16
174.160	(5/2 ⁻)	72.7510 29	25.5 7	101.408	7/2 ⁺	[E1]		0.280 4	α (L)=0.211 3; α (M)=0.0517 8 α (N)=0.01363 19; α (O)=0.00310 5; α (P)=0.000519 8; α (O)=2 33×10 ⁻⁵ 4
		89.95 2	100 <i>3</i>	84.2152	5/2+	(E1)		0.1598 23	$\alpha(\mathbf{C}) = 2.55 \times 10^{-4}$ $\alpha(\mathbf{L}) = 0.1205 \ 17; \ \alpha(\mathbf{M}) = 0.0294 \ 5$ $\alpha(\mathbf{N}) = 0.00777 \ 11; \ \alpha(\mathbf{O}) = 0.001782 \ 25; \ \alpha(\mathbf{P}) = 0.000304 \ 5;$ $\alpha(\mathbf{O}) = 1.467 \times 10^{-5} \ 21$
		115.63 3	0.10 3	58.5696	7/2-	[M1+E2]		10 4	$\alpha(Q)=1.467\times10^{-2.21}$ $\alpha(K)=5 \ 6; \ \alpha(L)=3.3 \ 13; \ \alpha(M)=0.9 \ 4$ $\alpha(N)=0.24 \ 11; \ \alpha(O)=0.055 \ 23; \ \alpha(P)=0.009 \ 4;$
		165.00 5	0.35 1	9.183	1/2-	[E2]		1.464 21	$\alpha(Q) = 0.00028 25$ $\alpha(K) = 0.209 3; \alpha(L) = 0.917 13; \alpha(M) = 0.252 4$ $\alpha(N) = 0.0681 10; \alpha(O) = 0.01545 22; \alpha(P) = 0.00254 4;$
		174.15 2	1.79 7	0.0	3/2-	[M1+E2]		2.7 15	$\alpha(Q) = 1.96 \times 10^{-5} \text{ s}^{-5}$ $\alpha(K) = 1.8 \ 16; \ \alpha(L) = 0.68 \ 4; \ \alpha(M) = 0.177 \ 22$ $\alpha(N) = 0.048 \ 6; \ \alpha(O) = 0.0111 \ 11; \ \alpha(P) = 0.00196 \ 6;$
183.4954	5/2+	81.2280 <i>21</i>	100 4	102.2685	3/2+	M1(+E2)	0.00 8	7.66 20	$\alpha(Q) = 9.E-37$ $\alpha(L) = 5.78 \ 14; \ \alpha(M) = 1.40 \ 4$ $\alpha(N) = 0.374 \ 11; \ \alpha(Q) = 0.0898 \ 24; \ \alpha(P) = 0.0172 \ 4;$ $\alpha(Q) = 0.001422 \ 22$
		82.0870 22	46.6 23	101.408	7/2+	M1(+E2)	0.04 6	7.47 23	$\alpha(Q) = 0.001422 22$ $\alpha(L) = 5.63 \ 17; \ \alpha(M) = 1.36 \ 5$ $\alpha(N) = 0.365 \ 12; \ \alpha(O) = 0.088 \ 3; \ \alpha(P) = 0.0167 \ 5;$ $\alpha(Q) = 0.001377 \ 22$
		99.2780 <i>36</i>	14.9 8	84.2152	5/2+	M1+E2	0.35 7	5.2 4	$\alpha(Q) = 0.00137722$ $\alpha(L) = 3.9 3; \ \alpha(M) = 0.97 8$ $\alpha(N) = 0.261 20; \ \alpha(O) = 0.062 5; \ \alpha(P) = 0.0113 7;$ $\alpha(Q) = 0.00072 3$
		105.79 <i>3</i>	0.89 8	77.692	5/2-	[E1]		0.1043 15	$\alpha(L)=0.0787 \ 11; \ \alpha(M)=0.0192 \ 3$

	Adopted Levels, Gammas (continued)													
						γ ⁽²³¹ Pa)	(continued)							
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. ^{†#}	δ^{\dagger}	α^{c}	Comments					
183.4954	5/2+	124.927 18	6.62 15	58.5696	7/2-	(E1)		0.294 4	$\begin{aligned} \alpha(N) = 0.00507 \ 8; \ \alpha(O) = 0.001168 \ 17; \\ \alpha(P) = 0.000202 \ 3; \ \alpha(Q) = 1.027 \times 10^{-5} \ 15 \\ \alpha(K) = 0.226 \ 4; \ \alpha(L) = 0.0511 \ 8; \ \alpha(M) = 0.01241 \ 18 \\ \alpha(N) = 0.00329 \ 5; \ \alpha(O) = 0.000761 \ 11; \end{aligned}$					
		183.489 20	3.77 15	0.0	3/2-	(E1)		0.1181 17	$\alpha(P)=0.0001331 \ 19; \ \alpha(Q)=7.12\times10^{-6} \ 10$ $\alpha(K)=0.0928 \ 13; \ \alpha(L)=0.0191 \ 3; \ \alpha(M)=0.00463 \ 7$ $\alpha(N)=0.001228 \ 18; \ \alpha(O)=0.000287 \ 4; $ $\alpha(P)=5 \ 13\times10^{-5} \ 8; \ \alpha(O)=3.05\times10^{-6} \ 5$					
189.14 193.21	(13/2 ⁺) (9/2 ⁻)	77.6 ^{<i>a</i>} 2 (24.3)	100 ^a 44 9	111.648 168.77	(9/2 ⁺) 11/2 ⁻	[E2] [M1]		40.5 8 270 <i>40</i>	B(M1)(W.u.)=0.35 + 9-5					
		81.6 ^{<i>a</i>} 4 91.4 ^{<i>a</i>} 6	88 ^{<i>a</i>} 31 25×10 ^{1<i>a</i>} 19	111.648 101.408	(9/2 ⁺) 7/2 ⁺	[E1] [E1]		0.207 <i>4</i> 0.153 <i>4</i>	B(E1)(W.u.)= $2.2 \times 10^{-5} + 8 - 7$ α (L)= $0.1142 \ 16; \ \alpha$ (M)= $0.0279 \ 4$ α (N)= $0.00737 \ 11; \ \alpha$ (O)= $0.001690 \ 24;$ α (P)= $0.000289 \ 4; \ \alpha$ (O)= $1.403 \times 10^{-5} \ 20$					
		115.5 [‡] 2	100 ^{<i>a</i>} 13	77.692	5/2-	[E2]	100	6.49 12	B(E2)(W.u.) = 180 + 8-9					
218.244	(7/2 ⁻)	134.4* 2 44.08 <i>17</i>	2.9 11	58.5696 174.160	//2 (5/2 ⁻)	(E2+M1) [M1+E2]	4.09	3.7 2 $3.3 \times 10^2 29$	B(E2)(W.u.)=25 5; B(M1)(W.u.)=0.0009 +4-3 α (L)=2.4×10 ² 21; α (M)=66 58 α (N)=18 16; α (O)=4.0 35; α (P)=0.65 55; α (P)=0.65 55;					
		106.61 3	70 3	111.648	(9/2+)	[E1]		0.1023 14	$\alpha(Q)=0.005729$ $\alpha(L)=0.077211; \alpha(M)=0.01883$ $\alpha(N)=0.004977; \alpha(O)=0.00114516;$					
		116.83 2	89 <i>5</i>	101.408	7/2+	(E1)		0.342 5	$\alpha(P)=0.000198$ 3; $\alpha(Q)=1.010\times10^{-9}$ 15 $\alpha(K)=0.262$ 4; $\alpha(L)=0.0608$ 9; $\alpha(M)=0.01478$ 21 $\alpha(N)=0.00391$ 6; $\alpha(O)=0.000904$ 13;					
		134.03 2	100.0 27	84.2152	5/2+	(E1)		0.249 4	$\alpha(P)=0.0001574\ 22;\ \alpha(Q)=8.26\times10^{-6}\ 12$ $\alpha(K)=0.192\ 3;\ \alpha(L)=0.0426\ 6;\ \alpha(M)=0.01033\ 15$ $\alpha(N)=0.00274\ 4;\ \alpha(Q)=0.000635\ 9;$					
		140.54 4	2.90 26	77.692	5/2-	[M1+E2]		5.3 25	$\alpha(P)=0.0001116 \ 16; \ \alpha(Q)=6.10\times10^{-6} \ 9$ $\alpha(K)=3 \ 3; \ \alpha(L)=1.5 \ 4; \ \alpha(M)=0.40 \ 12$ $\alpha(N)=0.11 \ 4; \ \alpha(O)=0.025 \ 7; \ \alpha(P)=0.0043 \ 9;$ $\alpha(Q)=0.00016 \ 12$					
247.320	7/2+	63.86 <i>3</i>	14.6 26	183.4954	5/2+	M1+E2	0.6 3	39 16	$\begin{array}{l} \alpha(Q) = 0.00016 \ I_{3} \\ \alpha(L) = 28 \ I_{2}; \ \alpha(M) = 7.5 \ 33 \\ \alpha(N) = 2.03 \ 88; \ \alpha(O) = 0.47 \ 20; \ \alpha(P) = 0.079 \ 31; \\ \alpha(O) = 0 \ 0023 \ 5 \end{array}$					
		73.0 <i>1</i> 135.670 <i>11</i>	4.3 <i>17</i> 51.1 <i>17</i>	174.160 111.648	(5/2 ⁻) (9/2 ⁺)	[E1] M1(+E2)	0.1 +4-1	0.277 8.5 <i>10</i>	$\alpha(\chi) = 0.0025 5$ $\alpha(K) = 6.7 \ 13; \ \alpha(L) = 1.32 \ 17; \ \alpha(M) = 0.32 \ 6$ $\alpha(N) = 0.086 \ 15; \ \alpha(O) = 0.021 \ 4; \ \alpha(P) = 0.0039 \ 5;$ $\alpha(Q) = 0.0032 \ 6$					
		145.06 4	3.73 26	102.2685	3/2+	(E2)		2.46 4	$\alpha(Q) = 0.00052 \ 0$ $\alpha(K) = 0.237 \ 4; \ \alpha(L) = 1.627 \ 23; \ \alpha(M) = 0.448 \ 7$ $\alpha(N) = 0.1209 \ 17; \ \alpha(O) = 0.0274 \ 4; \ \alpha(P) = 0.00448 \ 7;$ $\alpha(O) = 2.86 \times 10^{-5} \ 4$					
		145.94 2	20.6 9	101.408	7/2+	M1+E2	0.78 24	5.2 7	$\alpha(Q)=2.60\times 10^{-4}$ $\alpha(K)=3.5\ 8;\ \alpha(L)=1.26\ 8;\ \alpha(M)=0.32\ 3$ $\alpha(N)=0.087\ 8;\ \alpha(O)=0.0204\ 16;\ \alpha(P)=0.00362\ 19;$					

 ∞

				Ado	pted Levels, (Gammas (conti	inued)					
γ ⁽²³¹ Pa) (continued)												
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^{†#}	δ^{\dagger}	α ^C	Comments				
		163.1010 54	100 4	84.2152 5/2+	M1(+E2)	0.0 3	5.1 3	α (Q)=0.00017 4 α (K)=4.0 4; α (L)=0.776 19; α (M)=0.187 7 α (N)=0.0502 19; α (O)=0.0120 4; α (P)=0.00230 5; α (Q)=0.000100 15				
		169.65 <i>3</i>	0.86 4	77.692 5/2-	[E1]		0.1421 20	$\alpha(Q) = 0.000190175$ $\alpha(K) = 0.1113 16; \alpha(L) = 0.0233 4; \alpha(M) = 0.00564 8$ $\alpha(N) = 0.001497 21; \alpha(O) = 0.000349 5;$				
		188.76 2	2.10 9	58.5696 7/2-	[E1]		0.1105 16	$\begin{array}{l} \alpha(\mathrm{P}) = 6.22 \times 10^{-5} \ 9; \ \alpha(\mathrm{Q}) = 3.63 \times 10^{-6} \ 5 \\ \alpha(\mathrm{K}) = 0.0869 \ 13; \ \alpha(\mathrm{L}) = 0.01782 \ 25; \ \alpha(\mathrm{M}) = 0.00431 \\ 6 \end{array}$				

From ENSDF

					A	dopted Leve	ls, Gam	mas (continued))
						$\gamma(^{231}$	Pa) (con	tinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. ^{†#}	δ^{\dagger}	α^{c}	Comments
					<u> </u>				α (N)=0.001144 <i>16</i> ; α (O)=0.000267 <i>4</i> ; α (P)=4.79×10 ⁻⁵ 7; α (Q)=2.87×10 ⁻⁶ <i>4</i>
273.717	$(1/2^+)$	171.43 ^{&} 3	$32^{\&} 3$	102.2685	$3/2^+$	[M1+E2]		2.8 16	
		189.5	$\leq 0.8^{\circ}$	84.2152	5/2*				$x = 5/2^{-1}$ is not likely
		196.0	$\leq 0.8^{\circ\circ}$	0.192	5/2	[[]]1]		0.050(7	γ to $3/2$ is not likely.
		$264.55^{\circ\circ} 2$	$45^{\circ} 4$	9.183	1/2			0.0506 /	
-	(0.10-)	2/3./1~ 2	100~ 5	0.0	3/2	[EI]		0.0469 /	
274.96	(9/2 ⁻)	100.4* 8	20.6	174.160	(5/2 ⁻)	[E2]		12.0 5	I_{γ} : weighted average of 25 6 in (p,2n γ) and 14 7 in Coul. ex.
		163.5 [‡] 3	44.2 <mark>6</mark> 28	111.648	$(9/2^+)$	[E1]		0.155 2	I_{γ} : 86 21 in Coul. ex.
		173.5 [‡] 2	100.0 <mark>b</mark> 16	101.408	7/2+	[E1]		0.135 2	
300.98	$(15/2^+)$	111.8 ^a 2	81 ^a 8	189.14	$(13/2^+)$	[M1]		3.04 4	B(M1)(W.u.)=0.0063 + 15 - 24
		129.2 ^{<i>a</i>} 1	$100^{a} 9$	171.74	$(11/2^+)$	[E2]		4.00 6	B(E2)(W.u.)=276 + 98 - 36
304.7	$(9/2^+)$	121.1 [‡] 8	50 ^b 25	183.4954	5/2+				
		203.3 [‡] 3	100 ^b 25	101.408	$7/2^{+}$				5
311.78	$(5/2^+)$	253.3 ^{<i>a</i>} 2	100 ^{<i>a</i>} 13	58.5696	7/2-	[E1]		0.0559 8	$B(E1)(W.u.) = 6.0 \times 10^{-5} + 44 - 33$
		311.6 ^a 3	47 ^{<i>a</i>} 6	0.0	3/2-	(E1) [@]		0.0351 5	$B(E1)(W.u.) = 1.2 \times 10^{-5} + 12 - 6$
316.83	$(17/2^+)$	(15.9)	1.7 ^{<i>u</i>} 3	300.98	$(15/2^+)$	[M1]		230 50	B(M1)(W.u.)= $0.129 + 20 - 10$ γ implied from Coulomb excitation.
		127.7 ^{<i>a</i>} 1	100 ^{<i>a</i>} 8	189.14	$(13/2^+)$	[E2]		4.21 6	B(E2)(W.u.) = 286 + 37 - 46
317.94	$(3/2^+)$	240.27 5	70.8	77.692	5/2-	[E1]		0.0630 9	
		308.78 7	100 13	9.183	$1/2^{-}$	[E1]		0.0358 5	$B(E1)(W.u.) = 1.9 \times 10^{-5} + 17 - 11$
220.208	2/2-	31/.8/8	23 5	0.0	3/2 5/2+			0.0336.5	$B(E1)(W.u.)=2.1\times10^{-5}$ 13 $\alpha(K)=0.184$ 2; $\alpha(L)=0.0404$ 6; $\alpha(M)=0.00081$ 14
520.208	5/2	130.757	11.0 5	103.4934	5/2			0.237 3	$\alpha(N)=0.1043, \alpha(L)=0.04040, \alpha(M)=0.0056174$ $\alpha(N)=0.002604; \alpha(O)=0.0006039; \alpha(P)=0.000106115;$ $\alpha(O)=5.83\times10^{-6}9$
									I_{γ} : 20.7 20 in (p,2n γ).
		217.94 3	100.0 17	102.2685	3/2+	E1		0.0789 11	· -
		236.04 6	23.3 10	84.2152	5/2+	[E1]		0.0657 9	I_{γ} : 31.7 24 in (p,2n γ).
		242.51 4	2.10 10	//.692	5/2	[M1+E2]		1.0 /	$\alpha(K)=0.7$ 0; $\alpha(L)=0.22$ 4; $\alpha(M)=0.055$ 7 $\alpha(N)=0.0147$ 17; $\alpha(O)=0.0035$ 5; $\alpha(P)=0.00062$ 13; $\alpha(O)=3$ E-5 3
		311.00 5	7.8 <i>3</i>	9.183	1/2-	M1(+E2)	0.7 9	0.61 27	$\alpha(K) = 0.43 \ 25; \ \alpha(L) = 0.103 \ 25; \ \alpha(M) = 0.026 \ 6$ $\alpha(N) = 0.0069 \ 14; \ \alpha(O) = 0.0016 \ 4; \ \alpha(P) = 0.00030 \ 8;$ $\alpha(O) = 2 \ 0 \times 10^{-5} \ 11$
		320.15 8	0.40 10	0.0	3/2-	[M1+E2]		0.5 3	$\alpha(Q)=2.0\times10^{-11}$ $\alpha(K)=0.3 \ 3; \ \alpha(L)=0.09 \ 3; \ \alpha(M)=0.022 \ 6$ $\alpha(N)=0.0059 \ 17; \ \alpha(O)=0.0014 \ 5; \ \alpha(P)=0.00026 \ 9;$ $\alpha(Q)=1.6\times10^{-5} \ 13$
220.00	$(15/2^{-})$	139.75 [‡] 5	18.0 ^a 4	189.14	$(13/2^+)$	[E1]		0 225 3	$B(E1)(W,u_{r})=6.3\times10^{-5}+3-1$

From ENSDF

 ${}^{231}_{91}\mathrm{Pa}_{140}$ -10

					A	dopted Lev	els, Gammas ((continued)	
						γ ⁽²³	¹ Pa) (continue	d)	
E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}	Mult. ^{†#}	δ^{\dagger}	α^{c}	Comments
									$\begin{aligned} &\alpha(\text{K})=0.1744\ 25;\ \alpha(\text{L})=0.0382\ 6;\ \alpha(\text{M})=0.00927\ 13\\ &\alpha(\text{N})=0.00246\ 4;\ \alpha(\text{O})=0.000570\ 8;\ \alpha(\text{P})=0.0001004\\ &15;\ \alpha(\text{Q})=5.55\times10^{-6}\ 8\\ &\text{Other B(E1)(W.u.)}=10.2\times10^{-5}\ +14-3,\ \text{deduced from}\\ &\text{branching ratios.} \end{aligned}$
328.88	(15/2 ⁻)	160.13 [‡] 5	100 ^a 6	168.77	11/2-	(E2) [@]		1.651 23	B(E2)(W.u.)=299 +21-22 α (K)=0.216 3; α (L)=1.048 15; α (M)=0.288 5 α (N)=0.0778 12; α (O)=0.0176 3; α (P)=0.00290 5; α (Q)=2.14×10 ⁻⁵ 3
344.55	(11/2 ⁻)	126.3 [‡] 5 232.9 [‡] 2	21^{b} 7 100^{b} 4	218.244 111.648	$(7/2^{-})$ $(9/2^{+})$				
351.69	(13/2 ⁻)	(22.8)	$7^a 5$	328.88	$(15/2^{-})$	[M1]		320 22	B(M1)(W.u.)= $0.35 + 21 - 5$ γ implied from Coulomb excitation.
		158.5 ^a 3	100 ^a 14	193.21	$(9/2^{-})$	[E2]		1.72 3	B(E2)(W.u.)=272 +111-60
		162.4 ^a 5	9.5 ^a 48	189.14	$(13/2^+)$	[E1]		0.1577 25	$B(E1)(W.u.)=3.3\times10^{-5}$ 17
		180.0 ^{<i>a</i>} 2	22 ^{<i>a</i>} 3	171.74	(11/2+)	[E1]		0.1236 17	B(E1)(W.u.)=7.8×10 ⁻⁵ +16-12 α (K)=0.0970 14; α (L)=0.0201 3; α (M)=0.00486 7 α (N)=0.001289 18; α (O)=0.000301 5; α (P)=5.38×10 ⁻⁵ 8; α (Q)=3.18×10 ⁻⁶ 5
		183.3 [‡] 2	11.4 ^{<i>a</i>} 19	168.77	11/2-	[M1+E2]	1.1 +12-7	2.2 11	B(E2)(W.u.)=6.1 +29-41; B(M1)(W.u.)=0.00056 +62-34
351.85	(5/2 ⁻)	249.60 7 250.45 7 267.72 9	55 5 46 5 100 7	102.2685 101.408 84.2152	3/2 ⁺ 7/2 ⁺ 5/2 ⁺	[E1] [E1] [E1]		0.0578 8 0.0573 8 0.0493 7	
		274.10 10	2.3 9	77.692	5/2-	[M1+E2]		0.71 48	$\alpha(K)=0.5 5; \alpha(L)=0.14 4; \alpha(M)=0.036 7$ $\alpha(N)=0.0098 19; \alpha(O)=0.0023 5; \alpha(P)=0.00042 12;$ $\alpha(O)=2.5 \times 10^{-5} 20$
		351.80 10	4.6 9	0.0	3/2-	[M1+E2]		0.35 25	$\alpha(Q)=2.5\times10^{-2.0}$ $\alpha(K)=0.26\ 21;\ \alpha(L)=0.066\ 25;\ \alpha(M)=0.016\ 6$ $\alpha(N)=0.0044\ 14;\ \alpha(O)=0.0010\ 4;\ \alpha(P)=0.00019\ 8;$ $\alpha(Q)=1.2\times10^{-5}\ 10$
391.92	(9/2+)	(80.2)	4.4 22	311.78	(5/2 ⁺)	[E2]		34.6 12	B(E2)(W.u.)= $264 + 150 - 29$ γ implied from Coulomb excitation.
		222.5 [‡] 3	4.0 12	168.77	$11/2^{-}$	[E1]		0.0752 11	$B(E1)(W.u.) = 4.7 \times 10^{-5} + 11 - 12$
		333.6 [‡] 2	100 10	58.5696	7/2-	[E1]		0.0303 4	$B(E1)(W.u.)=1.9\times10^{-5}+3-4$
395.92	(7/2 ⁻)	284.1 ^{d‡} 2		111.648	(9/2+)				I γ =43 5 in (p,2n γ) for a double placement. I γ (284 γ)/I γ (294 γ)=0.5 2 in Coul. ex. where each γ is doubly placed.
		294.5 ^{d‡} 2		101.408	7/2+				I γ =43 5 in (p,2n γ) for a double placement.
		311.9 ^{<i>d</i>‡} 2		84.2152	5/2+				$I\gamma=100\ 5$ in $(p,2n\gamma)$ for a double placement, $I\gamma$ not available in Coul. ex.

From ENSDF

 ${}^{231}_{91}\text{Pa}_{140}$ -11

Adopted Levels, Gammas (continued) $\gamma^{(231}Pa)$ (continued)										
406.14	$(11/2^+)$	158.8 [‡] 5	100 50	247.320	7/2+					
		294.5 ^{<i>d</i>‡} 2		111.648	(9/2+)			$I\gamma=225 \ 25$ in (p,2n γ) and 200 67 in Coul. ex. for double placement.		
408.68	$(7/2^+)$	(90.7)	7 ^a 6	317.94	$(3/2^+)$	[E2]	19.4 6	B(E2)(W.u.)=238 +125-179 γ implied from Coulomb excitation.		
		215.5 ^{<i>a</i>} 2	59 ^a 18	193.21	(9/2 ⁻)	[E1]	0.0809 11			
		330.9 [‡] 3	100 ^{<i>a</i>} 13	77.692	5/2-	[E1]	0.0308 4	$B(E1)(W.u.) = 3.4 \times 10^{-5} + 12 - 19$		
424.94	$(13/2^{-})$	235.84 2	15 ⁰ 5	189.14	$(13/2^+)$					
		253.24 4	100.00 22	171.74	$(11/2^+)$					
450.62	$(9/2^{-})$	279.1 + 2	63 ⁰ 3	171.74	$(11/2^+)$					
		$338.3^{a_{+}}3$	D h	111.648	$(9/2^+)$			I_{γ} : <30 for double placement in (p,2n γ).		
407 (0	$(10/2^{+})$	349.3+ 2	$100^{0} 4$	101.408	$7/2^+$	D.(11	1.40.6	$\mathbf{D}(\mathbf{M})(\mathbf{W}) > 0.016 + 2.6$		
487.62	$(19/2^{+})$	1/1.0" 2	55°° 4	316.83	$(1//2^{+})$		4.42 0	B(M1)(W.u.)=0.010 + 3-0 Other $B(M1)(W.u.)=0.043$ 6 from branching ratios		
		186.6 ^a 1	100 ^{<i>a</i>} 4	300.98	$(15/2^+)$	[E2]	0.910 13	B(E2)(W.u.)=295 38		
494.80	$(21/2^+)$	(7.2)	0.085 ^a 25	487.62	$(19/2^+)$	[M1]	$2.4 \times 10^3 6$	B(M1)(W.u.)=0.406 + 36 - 31		
								γ implied from Coulomb excitation.		
		177.96 ⁴ 6	1004 4	316.83	$(17/2^+)$	[E2]	1.090 15	B(E2)(W.u.)=301 + 58 - 39		
520.54	$(15/2^{-})$	331.4+ 2	100	189.14	$(13/2^+)$					
525.35	$(13/2^+)$	132.7+ 9	50 ^a 25	391.92	$(9/2^+)$	[E2]	3.52 5	B(E2)(W.u.)=297 + 144-60 L: from Coulomb excitation		
		106 8 2	51 ^a 11	378.88	$(15/2^{-})$	(E1) [@]	0 1002 14	α_{γ} . from Coulomb exertation. $\alpha(K) = 0.0780 \ 12; \ \alpha(L) = 0.01606 \ 23; \ \alpha(M) = 0.00388 \ 6$		
		190.8 2	54 11	528.88	(15/2)	(E1)	0.1002 14	$\alpha(\mathbf{N}) = 0.0789 \ 12, \ \alpha(\mathbf{L}) = 0.01000 \ 25, \ \alpha(\mathbf{M}) = 0.00388 \ 0$ $\alpha(\mathbf{N}) = 0.001031 \ 15; \ \alpha(\mathbf{O}) = 0.000241 \ 4; \ \alpha(\mathbf{P}) = 4.33 \times 10^{-5} \ 7;$ $\alpha(\mathbf{O}) = 2.62 \times 10^{-6} \ 4$		
		356.3 [‡] 2	100 ^{<i>a</i>} 9	168.77	11/2-	(E1) [@]	0.0263 4	B(E1)(W.u.)= $1.9 \times 10^{-5} + 6 - 4$ E weighted average of values from Coul. ex. and (p.2py).		
535.77	$(19/2^{-})$	(48.2)	1.6 ^a 8	487.62	$(19/2^+)$	[E1]	0.83 5	$B(E1)(W.u.)=3.3\times10^{-4}+33-12$		
								γ implied from Coulomb excitation.		
		206.88 [‡] 5	100 ^{<i>a</i>} 5	328.88	$(15/2^{-})$	(E2) [@]	0.619 9	B(E2)(W.u.)=308 +18-16		
								$\begin{aligned} &\alpha(\mathbf{K}) = 0.1475 \ 21; \ \alpha(\mathbf{L}) = 0.343 \ 5; \ \alpha(\mathbf{M}) = 0.0940 \ 14 \\ &\alpha(\mathbf{N}) = 0.0254 \ 4; \ \alpha(\mathbf{O}) = 0.00577 \ 9; \ \alpha(\mathbf{P}) = 0.000956 \ 14; \\ &\alpha(\mathbf{Q}) = 1.058 \times 10^{-5} \ 15 \end{aligned}$		
		218.93 ^a 6	22.9 ^a 5	316.83	$(17/2^+)$	[E1]	0.0780 11	$B(E1)(W.u.)=7.5\times10^{-5} 4$		
543.07	$(11/2^+)$	(134.2)	30 ^{<i>a</i>} 22	408.68	$(7/2^+)$	[E2]	3.41 8	B(E2)(W.u.)=277 +143-127		
		2 40 5 2	1000 12	100.01	(0.12-)	1714 7	0.0000	γ implied from Coulomb excitation.		
551 50	$(17/2^{-})$	349.5* 2	100^{4} 13 0 30 ⁴ 3	193.21 535.77	$(9/2^{-})$ $(10/2^{-})$	[E1] IM11	0.02/0.4	$B(E1)(W.u.)=4.1\times10^{-3}+14-20$ B(M1)(W.u.)=0.347+12-31		
551.50	(1/2)	(13.0)	0.37 3	555.11	(19/2)	[1411]	233 24	γ implied from Coulomb excitation.		
		199.82 [‡] 6	100 ^{<i>a</i>} 4	351.69	$(13/2^{-})$	(E2) [@]	0.704 10	B(E2)(W.u.)=328 + 14 - 13		

 $^{231}_{91}$ Pa $_{140}$ -12

 $^{231}_{91}$ Pa $_{140}$ -12

From ENSDF

						Ado	pted Levels,	Gammas (cor	tinued)	
							γ (²³¹ Pa) (continued)		
	E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. ^{†#}	δ^{\dagger}	α ^C	Comments
	551.50	(17/2 ⁻)	223.0 ^{<i>a</i>} 3	2.5 ^{<i>a</i>} 7	328.88	(15/2 ⁻)	[M1+E2]	1.3 +21-7	1.1 6	$\begin{aligned} \alpha(\text{K}) = 0.1568 \ 22; \ \alpha(\text{L}) = 0.400 \ 6; \ \alpha(\text{M}) = 0.1096 \ 16 \\ \alpha(\text{N}) = 0.0296 \ 5; \ \alpha(\text{O}) = 0.00672 \ 10; \ \alpha(\text{P}) = 0.001113 \ 16; \\ \alpha(\text{Q}) = 1.162 \times 10^{-5} \ 17 \\ \text{B}(\text{E2})(\text{W.u.}) = 4.6 \ +22 - 24; \ \text{B}(\text{M1})(\text{W.u.}) = 0.00045 \end{aligned}$
			234.5 ^{<i>a</i>} 5	1.1 ^{<i>a</i>} 4	316.83	(17/2+)	[E1]		0.0670 10	+50-54 B(E1)(W.u.)=8.2×10 ⁻⁵ 21 Other B(E1)(W.u.)=4.5×10 ⁻⁵ +29-21 from branching ratios.
	604.25	(3/2 ⁻)	250.5 ^{<i>a</i>} 2 284.1 ^{<i>d</i>‡} 2	4.1 ^{<i>a</i>} 4	300.98 320.208	(15/2 ⁺) 3/2 ⁻	[E1]		0.0573 8	B(E1)(W.u.)= $1.3 \times 10^{-5} + 9 - 7$ I γ =69 11 in (p,2n γ) and 12 4 in Coul. ex. for a doubly placed γ . Crude estimate is <40 from the two values.
	632.21	(5/2 ⁻)	420.7 [‡] 2 280.6 [‡] 3 311.9 ^d [‡] 2	100b 8 $100b 40$ b	183.4954 351.85 320.208	5/2 ⁺ (5/2 ⁻) 3/2 ⁻				I γ =420 20 in (p,2n γ) for a double placement, I γ not available in Coul. ex.
	678.1	$(7/2^{-})$	326.2 [‡] 3	100	351.85	(5/2 ⁻)				
13	705.34	$(17/2^+)$	180.0 [‡] 2	90 ^a 41	525.35	$(13/2^+)$	[E2]			B(E2)(W.u.)=305 +176-130
	716.74	(15/2+)	376.4 [‡] 2 173.3 ^a 2 365.4 ^a 2	$100^{a} 10$ $120^{a} 55$ $100^{a} 15$	328.88 543.07 351.69	$(15/2^{-})$ $(11/2^{+})$ $(13/2^{-})$	(E1) [@] [E2] [E1]		0.0234 3	B(E1)(W.u.)= $3.5 \times 10^{-5} + 11 - 6$ B(E2)(W.u.)= $303 + 205 - 54$ B(E1)(W.u.)= $2.7 \times 10^{-5} 6$
	721.41 728.38	(25/2 ⁺) (23/2 ⁺)	226.6 ^{<i>a</i>} 1 233.2 ^{<i>a</i>} 5 240.9 ^{<i>a</i>} 5	$ 100^{a} 88^{a} 10 100^{a} 10 $	494.80 494.80 487.62	$(21/2^+)$ $(21/2^+)$ $(19/2^+)$	[E2] [M1] [E2]			B(E2)(W.u.)=261 + 60 - 130 B(M1)(W.u.)=0.112 + 22 - 17 B(E2)(W.u.)=307 + 60 - 69
	734.2 785.59	(9/2 ⁻) (23/2 ⁻)	338.3 ^{d‡} 3 (57.2)	100 0.090 ^{<i>a</i>} 23	395.92 728.38	$(7/2^{-})$ $(23/2^{+})$	[E1]		0.53 3	B(E1)(W.u.)= $4.1 \times 10^{-5} + 8 - 12$
	788.05	$(21/2^{-})$	249.8 [‡] 1 290.8 ^a 2 236.58 [‡] 8	$100.0^{a} 25$ 23.7 ^a 7 100.0 ^a 28	535.77 494.80 551.50	$(19/2^{-})$ $(21/2^{+})$ $(17/2^{-})$	[E2] [E1] [E2]		0.0409 6	B(E2)(W.u.)= $327 + 19 - 20$ B(E1)(W.u.)= $8.4 \times 10^{-5} + 4 - 3$ B(E2)(W.u.)= $310 \ 23$
			$252.1^{a} 5$ $293.1^{a} 5$ $300.5^{a} 3$	3.3^{a} 11 1.5^{a} 7 3.3^{a} 4	535.77 494.80 487.62	$(19/2^{-})$ $(21/2^{+})$ $(19/2^{+})$	[M1] [E1] [E1]		0.0381 5	B(M1)(W.u.)= $0.0020 + 10-8$ B(E1)(W.u.)= $6.6 \times 10^{-5} + 41-29$ B(E1)(W.u.)= $1.5 \times 10^{-5} + 10-8$
	929.55	(21/2 ⁺)	$224.2^{\ddagger} 2$	33^{b} 12	705.34	$(17/2^+)$				Branching ratios for 224γ and 394γ from γ (ce)-coin data in (p,2n γ) listed in comments in that dataset.
	946.0	(19/2+)	393.8 ⁺ 5 (228.9)	$100^{0} 30$ $100^{a} 52$	535.77 716.74	$(19/2^{-})$ $(15/2^{+})$	[E2]		0.432 6	B(E2)(W.u.)= $314 + 162 - 57$ γ implied from Coulomb excitation.
	993.88	(29/2+)	394.5 ^{<i>a</i>} 4 272.5 ^{<i>a</i>} 2	$37^{a} 7$ 100^{a}	551.50 721.41	(17/2 ⁻) (25/2 ⁺)	[E1] [E2]		0.241 4	$B(E1)(W.u.) = 4.4 \times 10^{-5} + 9 - 12$

 $^{231}_{91}$ Pa $_{140}$ -13

$\gamma(^{231}\text{Pa})$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. ^{†#}	α^{c}	Comments
1019.2	$(27/2^+)$	290.8^{a} 3	100^{a} 17	728.38	$(23/2^+)$	[E2]	0.196.3	
101/12	(= //=)	$298.0^{a} 5$	33^{a} 17	721.41	$(25/2^+)$	[M1]	01170 0	B(M1)(W.u.)=0.045+28-23
1057.11	$(25/2^{-})$	269.1^{a} 1	100^{a} 3	788.05	$(21/2^{-})$	[E2]		B(E2)(W.u.)=322+50-30
	(-1)	271.4 ^{<i>a</i>} 3	6.7 ^{<i>a</i>} 21	785.59	$(23/2^{-})$	[M1]		B(M1)(W.u.)=0.0084 + 28 - 23
		328.7 ^a 3	6.2^{a} 26	728.38	$(23/2^+)$	ĪE11	0.0313.5	$B(E1)(W.u.)=3.7\times10^{-5}$ 16
1074.31	$(27/2^{-})$	(17.2)	$0.11^{a} 6$	1057.11	$(25/2^{-})$	[M1]	183 17	B(M1)(W.u.)=0.28 + 34 - 4
					(-1)			γ implied from Coulomb excitation.
		288.7 ^a 2	100 ^{<i>a</i>} 3	785.59	$(23/2^{-})$	[E2]	0.201 3	B(E2)(W.u.)=324+27-37
		352.8 <mark>a</mark> 2	25.7 <mark>a</mark> 14	721.41	$(25/2^+)$	IE1	0.0268 4	$B(E1)(W.u.) = 1.1 \times 10^{-4} + 0 - 4$
					(-1)			Other B(E1)(W.u.)= $1.9 \times 10^{-4} + 3 - 2$ from branching ratios.
1196.2	$(23/2^+)$	408.1 ^{<i>a</i>} 3	100 ^a	788.05	$(21/2^{-})$			
1307.8	$(33/2^+)$	314.2^{a} 3	100^{a}	993.88	$(29/2^+)$	[E2]	0.155 2	
1355.5	$(29/2^{-})$	280.6 ^{<i>a</i>} 5	$4^a 2$	1074.31	$(27/2^{-})$	[<u>]</u>		B(M1)(W.u.)=0.0052 + 57 - 16
								Other $B(M1)(W.u.)=0.009 + 6-5$ from branching ratios.
		298.6 ^a 3	100 ^{<i>a</i>} 4	1057.11	$(25/2^{-})$	[E2]		B(E2)(W.u.) = 330 + 31 - 114
1357 5	$(31/2^+)$	338 3 <mark>da</mark> 3	100 <mark>a</mark>	1019 2	$(27/2^+)$			
1398.15	$(31/2^{-})$	(42.6)	0.54^{a} 30	1355 5	$(29/2^{-})$	[M1]	50 7 20	B(M1)(Wu) = 0.28 + 6 - 15
1570.15	(31/2)	(12.0)	0.51 50	1000.0	(2)/2)	[1,11]	50.7 20	γ implied from Coulomb excitation.
		323.8 ^a 2	100 ^a 9	1074.31	$(27/2^{-})$	[E2]		B(E2)(W.u.) = 322 + 31 - 52
		$404.2^{a}.2$	46^{a} 6	993.88	$(29/2^+)$	[E1]	0.0201.3	$B(E1)(Wu) = 41 \times 10^{-4} 6$
1660.4	$(37/2^+)$	$352.6^{a}.5$	100 ^a	1307.8	$(33/2^+)$	[E2]	0.1110 16	
1683.2	$(33/2^{-})$	327.7^{a} 3	100^{a}	1355.5	$(29/2^{-})$	[E2]	0.137 2	
1754.2	$(35/2^{-})$	355.8 ^{<i>a</i>} 3	$100^{a} 33$	1398.15	$(31/2^{-})$	[E2]	0.1080 15	B(E2)(W.u.)=0.03 + 76 - 0
	(/)	446.9 ^a 5	33 ^a 11	1307.8	$(33/2^+)$	ĪE1	0.0164 2	$B(E1)(W.u.) = 3.7 \times 10^{-4}$ 16
2040.4	$(37/2^{-})$	357.2 ^a 8	100 ^a	1683.2	$(33/2^{-})$	[E2]	0.1070 15	
2139.3	$(39/2^{-})$	$385.1^{a}.3$	$100^{a} 40$	1754.2	$(35/2^{-})$	[E 2]	0.0870.12	$B(F2)(W_{11}) = 32 \times 10^{1} + 128 - 30$
2109.0	(37)2)	505.1 5	100 10	175112	(33/2)	[112]	0.0070 12	B(E2)(W.u.) from level $T_{1/2}$ and γ -branching ratio. Note: upper limit exceeds RUL=1000 for E2.
		479.0 ^a 6	100 ^a 60	1660.4	$(37/2^+)$	[E1]	0.0142 2	$B(E1)(W.u.) = 6.6 \times 10^{-4} + 54 - 41$

[†] From ²³¹Th β^- decay, unless otherwise specified. [‡] From Coulomb excitation and/or (p,2n γ). [#] From conversion electron data in ²³¹Th β^- decay, unless otherwise specified.

^(a) From ce and $\gamma(\theta)$ in (p,2n γ), assignment treated as tentative by the evaluators, as no details of ce data are available.

[&] From ²³¹U ε decay.

^{*a*} From Coul. Ex. only.

^{*b*} From (p,2n γ).

^c Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies,

 $\gamma(^{231}\text{Pa})$ (continued)

assigned multipolarities, and mixing ratios, unless otherwise specified.

^d Multiply placed.
 ^e Placement of transition in the level scheme is uncertain.

15

²³¹₉₁Pa₁₄₀

 $^{231}_{91}$ Pa $_{140}$

²³¹₉₁Pa₁₄₀

 $^{231}_{91}$ Pa $_{140}$ -19

From ENSDF

Adopted Levels,

, Gammas

Legend

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{231}_{91}{
m Pa}_{140}$

Legend

Adopted Levels, Gammas

²³¹₉₁Pa₁₄₀

²³¹₉₁Pa₁₄₀