²³⁵Np α decay (396.1 d) 1973Br12

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, Jagdish K. Tuli, and Edgardo Browne	NDS 185,560 (2022)	31-Aug-2022

Parent: ²³⁵Np: E=0; $J^{\pi}=5/2^+$; $T_{1/2}=396.1$ d 12; $Q(\alpha)=5193.8$ 15; % α decay=0.00260 13

 235 Np-J^{π},T_{1/2}: From 235 Np Adopted Levels in the ENSDF database (Feb 2014 update). No new experimental references for half-life after this update.

²³⁵Np-% α decay: % α =0.00260 *13* (1986AgZV, measurement of x-rays from ²³⁵Np and ²³⁶Np ε decay, and alpha particles from ²³⁷Np α decay). Others: % α =0.0035 *4* (1956Ho46, I α /K x ray+L x ray, it is not clear whether correction for ε M+ had been applied); 0.0012 *1* (1957Th37); 0.00159 (1958Gi05, I α /K x ray+L x ray, with correction for ε M+/ ε L=0.46); \approx 0.002 (1984Wh02, K x ray/I α).

1973Br12 (also 1970BrZX): ²³⁵Np produced in ²³⁵U(d,2n),E(d)=12 MeV using an enriched target, followed by chemical separation. Measured $E\alpha$, $I\alpha$, $E\gamma$, $I\gamma$, $\alpha\gamma$ -coin using semiconductor detector for α particles with FWHM=14.5 keV, and Ge(Li) detector for γ rays. A magnetic field to the source was applied to reduce spurious peaks in the singles α spectrum, caused by the true coincidences between conversion electrons and α particles.

1986AgZV: measured $\%\alpha$ branching ratio from the decay of ²³⁵Np.

Others:

1987Ha07: ²³⁵Np produced in ²³⁸U(p,4n),E(p)=50 MeV reaction. Measured $E\alpha$, $I\alpha$, x rays.

1984Wh02: ²³⁵Np produced in ²³⁵U(p,n),E(p)=50 MeV reaction. Measured x ray and α spectra, the latter with peaks at 4.88 and 4.96 MeV. Deduced $\Re \alpha$ branching ratio from ²³⁵Np decay.

1958Gi05, 1957Th37, 1956Ho46: measured $\%\alpha$ branching ratio from ²³⁵Np decay.

Evaluators' note: the decay scheme seems fairly complete, except for spectral information about low-energy γ transitions of 9.18 and 17.19 keV.

²³¹Pa Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0.0#	3/2-	32570 y <i>130</i>	
9.2 [#] 10	$1/2^{-}$		
58.570 [#] 3	7/2-	274 ps 10	
84.2152 [@] 20	5/2+	45.1 ns 13	T _{1/2} : other: 37 ns 4 (1956Ho46, delayed coincidence). Proposed configuration= $\pi 3/2$ [651] (1973Br12).
101.409 [@] 4	7/2+	0.7 ns 2	
102.2687 [@] 21	$3/2^{+}$	0.7 ns 2	
111.647 [@] 13 169.4 4 174? 1 183.4956 ^{&} 25 247.317 6 303? ^{&} 7	$(9/2^+) \\ 11/2^- \\ (5/2^-) \\ 5/2^+ \\ 7/2^+ \\ (9/2^+)$	≤0.19 ns	

[†] From least-squares fit to $E\gamma$ data.

[‡] From the Adopted Levels.

[#] Proposed member of configuration= $\pi 1/2[530]$ (1973Br12).

[@] Proposed member of configuration= $\pi 3/2[651]$ (1973Br12).

& Proposed member of configuration= $\pi 5/2[642]$ (1973Br12).

²³⁵Np-Q(*α*): From 2021Wa16.

²³⁵Np α decay (396.1 d) 1973Br12 (continued)

α radiations

$E\alpha^{\dagger \#}$	E(level)	$I\alpha^{@}$	HF^{\ddagger}	Comments
4809 ^{&} 7 4862 <i>3</i>	303? 247.317	≈0.1 0.7 <i>1</i>	≈52 18 <i>3</i>	E α =4806 7 (1973Br12). E α =4859 3 (1973Br12). I α =0.8 3, deduced by evaluators from γ -ray transition intensity balance. E α =4873 keV 5, I α =0.8 (1960Gi03).
4925 2	183.4956	11.5 5	2.88 20	E α =4922 2 (1973Br12). I α =20.1 <i>11</i> , deduced by evaluators from γ -ray transition intensity balance. HF: Low alpha hindrance factor is consistent with 5/2 ⁺ , 5/2[642] favored state assignment. E α =4934 keV 5, I α =11.8 (1960Gi03).
4934 ^{&} 4940 6	174? 169.4	<0.1 ≈0.6	>360 ≈68	I α : upper limit from I γ values from 174 level. E α =4937 6 (1973Br12).
4997 <i>4</i>	111.647	≈6	≈16	$I\alpha$ =0.8 3, deduced by evaluators from γ -ray transition intensity balance. E α =4994 4 (1973Br12).
≈5007 ^{&} 5008 4	102.2687 101.409	≤0.5 24 8	≥210 4.7 <i>16</i>	$I\alpha$ =-2.7 22 from transition intensity balance, E α =5004 4 (1973Br12).
5025 2	84.2152	53 8	2.8 5	$E\alpha$ =5022 2 (1973Br12). $I\alpha$ =48 11, deduced by evaluators from γ -ray transition intensity balance. $E\alpha$ =5024 keV 5, $I\alpha$ =83.6 (1960Gi03). HF: Low alpha hindrance factor is due to strong mixing of this 5/2 ⁺ , 3/2[651] state with the 5/2 ⁺ , 5/2[642] favored state at 183.5 keV through the Coriolis interaction.
5051 2 5100 3 5108 3	58.570 9.2 0.0	$1.8 \ 3 \approx 0.2 \\ 1.5 \ 2$	119 21 ≈2200 348 51	Eα=5048 2 (1973Br12). Eα=5097 3 (1973Br12). Eα=5105 3 (1973Br12). Eα=5104 keV 5, Iα=3.8 (1960Gi03).

[†] From 1973Br12, recalibrated by 1991Ry01. Recalibrated values given here are $\approx 2 \text{ keV}$ higher than those deduced from Q(α) (2021Wa16).

[±] The nuclear radius parameter $r_0(^{231}Pa)=1.51623$ 36 is deduced from interpolation (or unweighted average) of radius parameters of the adjacent even-even nuclides, as given in 2020Si16, and in the data file of the ALPHAD-RadD code.

[#] Evaluators have adjusted by 9 keV E α values from 1960Gi03 given in comments. Original E α are relative to ²³⁷Np(86 α)=4781 keV. Values given here are relative to ²³⁷Np(86 α)=4789.8 (1991Ry01).

[@] For absolute intensity per 100 decays, multiply by 2.60×10^{-5} 13.

[&] Existence of this branch is questionable.

γ ⁽²³¹Pa)

Iy normalization: The γ -ray intensities in 1973Br12 are per 100 α decays, deduced from their $\alpha\gamma$ -coin results.

ω

E_{γ}^{\dagger}	$I_{\gamma}^{\#b}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^a	δ^{a}	α^{c}	$I_{(\gamma+ce)}^{b}$	Comments
(9.183)		9.2	$1/2^{-}$	0.0	$3/2^{-}$					E_{γ} : from the Adopted Gammas.
(17.195 21)		101.409	7/2+	84.2152	5/2+	(M1)		166 3	39 ^{&} 10	α (L)=1.4; α (M)=122.6 <i>18</i> ; α (N)=32.7 <i>5</i> ; α (O)=7.75 <i>12</i> ; α (P)=1.505 <i>22</i> ; α (Q)=0.144 <i>2</i>
(18.055 18)		102.2687	3/2+	84.2152	5/2+	M1+E2	0.040 +18-0	218 <i>18</i>	10 ^{&} 2	α (L)=45 <i>15</i> ; α (M)=128 8 α (N)=34 2; α (O)=8.1 4; α (P)=1.55 5; α (Q)=0.124 <i>1</i>
(25.65 2)	14.3 [@] 7	84.2152	5/2+	58.570	7/2-	E1		4.37 6		%I γ =0.000372 26 α (L)=3.26 5; α (M)=0.843 12 α (N)=0.219 4; α (O)=0.0471 7; α (P)=0.00673 10; α (O)=0.000196 3
(53.2 8)	≈3.7	111.647	(9/2+)	58.570	7/2-	[E1]		0.64 3	≈6	% Iγ≈9.5×10 ⁻⁵ α (L)=0.483 21; α (M)=0.119 6 α (N)=0.0313 14; α (O)=0.0070 3; α (P)=0.00114 5; α (Q)=4.53×10 ⁻⁵ 16 I _(γ+ce) : from Iα value, if 53.2γ is the only decaying transition. I _γ : from I(γ+ce) and α.
58.5700 24	0.50 <i>3</i>	58.570	7/2-	0.0	3/2-	E2		155.5 22		% Iy=1.30×10 ⁻⁵ <i>I0</i> α (L)=113.6 <i>I6</i> ; α (M)=31.3 5 α (N)=8.43 <i>I2</i> ; α (O)=1.90 <i>3</i> ; α (P)=0.306 5; α (Q)=0.000818 <i>I2</i> E _y : 58.5 <i>4</i> (1973Br12). Iy=0.6 2 (1973Br12) is imprecise. Iy=0.50 <i>3</i> deduced by evaluators from Iy(25.6)=14.3 <i>7</i> , I α (58)=1.8 <i>3</i> , and intensity balance at 58-keV level.
(63.86 3)	0.007 [@] 4	247.317	7/2+	183.4956	5/2+	M1+E2	0.6 3	39 16		%I γ =1.8×10 ⁻⁷ 10 α (L)=28 12; α (M)=7.5 33 α (N)=2.03 88; α (O)=0.47 20; α (P)=0.079 31; α (O)=0.0023 5
81.2280 <i>21</i>	1.5 <i>I</i>	183.4956	5/2+	102.2687	3/2+	M1(+E2)	0.00 8	7.66 20		$\% I_{\gamma} = 3.90 \times 10^{-5} 33$ $\alpha(L) = 5.78 I4; \ \alpha(M) = 1.40 4$ $\alpha(N) = 0.374 I1; \ \alpha(O) = 0.0898 24; \ \alpha(P) = 0.0172$ $4; \ \alpha(Q) = 0.001422 22$ $E_{\gamma}: 81.2 2 (1973Br12).$
(82.0870 22)	0.70 [@] 5	183.4956	5/2+	101.409	$7/2^{+}$	M1(+E2)	0.04 6	7.47 23		$\%$ I γ =1.82×10 ⁻⁵ 16

				235	5 Np α de	cay (396.1 d)	1973Br1	2 (continued)	-
						$\gamma(^{231}\text{Pa})$	(continued)		
E_{γ}^{\dagger}	$I_{\gamma}^{\#b}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^a	δ^{a}	α^{c}	Comments
84.2140 22	6.9 4	84.2152	5/2+	0.0	3/2-	E1		2.17 21	$ \frac{\alpha(L)=5.63 \ 17; \ \alpha(M)=1.36 \ 5}{\alpha(N)=0.365 \ 12; \ \alpha(O)=0.088 \ 3; \ \alpha(P)=0.0167 \ 5; \alpha(Q)=0.001377 \ 22 %Iγ=0.000179 \ 14 Eγ: 84.2 \ 1 (1973Br12). Mult.: Anomalous E1 γ ray. Total conversion coefficient from 231Th β- decay. $
89.95 ^{‡d} 2	<0.07	174?	(5/2 ⁻)	84.2152	5/2+	(E1)		0.1598 23	%I γ <1.8×10 ⁻⁶ α (L)=0.1205 <i>17</i> ; α (M)=0.0294 <i>5</i> α (N)=0.00777 <i>11</i> ; α (O)=0.001782 <i>25</i> ; α (P)=0.000304 <i>5</i> ; α (Q)=1.467×10 ⁻⁵ <i>21</i>
93.02 ^{<i>d</i>} 4	0.10 5	102.2687	3/2+	9.2	1/2-	(E1)		0.1463 21	%I _γ =2.6×10 ⁻⁶ 13 α (L)=0.1103 16; α (M)=0.0269 4 α (N)=0.00711 10; α (O)=0.001633 23; α (P)=0.000279 4; α (Q)=1.363×10 ⁻⁵ 20 E _γ : 92.2 4 (1973Br12, uncertain γ).
(99.2780 36)	0.22 [@] 2	183.4956	5/2+	84.2152	5/2+	M1+E2	0.35 7	5.2 4	$\%_{I\gamma}=5.7 \times 10^{-6} 6$ $\alpha(L)=3.9 3; \alpha(M)=0.97 8$ $\alpha(N)=0.261 20; \alpha(O)=0.062 5; \alpha(P)=0.0113 7;$ $\alpha(O)=0.00072 3$
102.2700 24	0.30 6	102.2687	3/2+	0.0	3/2-	(E1)		0.1141 <i>16</i>	$%I_{Y}=7.8 \times 10^{-6}$ 16 α(L)=0.0860 12; $α(M)=0.0210$ 3 α(N)=0.00554 8; $α(O)=0.001276$ 18; $α(P)=0.000220$ 3; $α(Q)=1.107 \times 10^{-5}$ 16 E _Y : 102.2 4 (1973Br12).
110.8 4	0.09 3	169.4	11/2-	58.570	7/2-	(E2)		7.60 11	
124.927 <i>18</i>	0.07 3	183.4956	5/2+	58.570	7/2-	(E1)		0.294 4	$\acute{M}_{1\gamma}=1.8\times10^{-6} 8$ $\alpha(K)=0.226 6; \alpha(L)=0.0510 13; \alpha(M)=0.0124 4$ $\alpha(N)=0.00328 9; \alpha(O)=0.000759 19; \alpha(P)=0.000133 4;$ $\alpha(Q)=7.11\times10^{-6} 17$ E _Y : 125 1 (1973Br12).
^x 126 2	0.3 2								% $I\gamma = 8 \times 10^{-6} 5$ E _{γ} : from 1973Br12. This γ seems different from the 125 γ from 247 level.
(135.670 11)	0.026 [@] 16	247.317	7/2+	111.647	(9/2+)	M1(+E2)	0.1 +4-1	8.5 10	% $I\gamma=7.E-7.4$ $\alpha(K)=6.7.13$; $\alpha(L)=1.32.17$; $\alpha(M)=0.32.6$

4

From ENSDF

 $^{231}_{91}\mathrm{Pa}_{140}$ -4

 $^{231}_{91}\mathrm{Pa}_{140}\text{--}4$

					235	Np α decay ((396.1 d)	1973Br12	continued)
						<u>)</u>	y(²³¹ Pa)	(continued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\#b}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. ^a	δ ^a	α ^C	Comments
163.1010 54	0.05 3	247.317	7/2+	84.2152	5/2+	M1(+E2)	0.0 3	5.1 3	$ \begin{array}{l} \alpha(\mathrm{N})=0.086 \ 15; \ \alpha(\mathrm{O})=0.021 \ 4; \ \alpha(\mathrm{P})=0.0039 \ 5; \ \alpha(\mathrm{Q})=0.00032 \ 6 \\ \%_{\mathrm{I}}\gamma=1.3\times10^{-6} \ 8 \\ \alpha(\mathrm{K})=4.0 \ 4; \ \alpha(\mathrm{L})=0.776 \ 19; \ \alpha(\mathrm{M})=0.187 \ 7 \\ \alpha(\mathrm{N})=0.0502 \ 19; \ \alpha(\mathrm{O})=0.0120 \ 4; \ \alpha(\mathrm{P})=0.00230 \ 5; \ \alpha(\mathrm{Q})=0.000190 \\ 15 \end{array} $
174.15 ^{‡d} 2	<0.007	174?	(5/2 ⁻)	0.0	3/2-	[M1+E2]		2.7 15	$F_{\gamma}^{1.5} = 165 \ l \ (1973Br12).$ $\% I_{\gamma} \le 1.8 \times 10^{-7}$ $\alpha(K) = 1.8 \ l6; \ \alpha(L) = 0.68 \ 4; \ \alpha(M) = 0.177 \ 22$ $\alpha(K) = 0.048 \ 6; \ \alpha(D) = 0.0111 \ k_{1} \ \alpha(D) = 0.00106 \ 6; \ \alpha(D) = 0.75 \ 7k$
183.489 20	0.04 3	183.4956	5/2+	0.0	3/2-	(E1)		0.1181 <i>17</i>	$\alpha(N)=0.048\ 0, \ \alpha(O)=0.0111\ 17; \ \alpha(P)=0.00190\ 0; \ \alpha(Q)=8.7\times10^{-7}\ 77$ %I γ =1.0×10 ⁻⁶ 8 $\alpha(K)=0.0928\ 13; \ \alpha(L)=0.0191\ 3; \ \alpha(M)=0.00463\ 7$ $\alpha(N)=0.001228\ 18; \ \alpha(O)=0.000287\ 4; \ \alpha(P)=5.13\times10^{-5}\ 8; \ \alpha(Q)=3.05\times10^{-6}\ 5$ E $_{\gamma}$: 185 1 (1973Br12).

[†] From the Adopted Gammas, which are mostly from 231 Th β^- decay, as these are most precisely known. Exceptions are noted.

[‡] γ not seen in 1973Br12, only an upper limit is given. [#] From 1973Br12 per 100 decays of α particles, unless otherwise specified.

[@] From γ -branching ratios in the Adopted Gammas, which are mostly from ²³¹Th β^- decay.

& From γ -ray transition intensity balance at 84-, 101-, and 102-keV levels, and γ -ray data from ²³¹Th β^- decay.

^{*a*} From the Adopted Levels, Gammas dataset.

^b For absolute intensity per 100 decays, multiply by 2.60×10^{-5} 13.

^c Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^d Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

S

 $^{231}_{91}$ Pa $_{140}$ -5

 $^{231}_{91}$ Pa $_{140}$ -5

