	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, Jagdish K. Tuli, and Edgardo Browne	NDS 185, 560 (2022)	31-Aug-2022

1996Le01 (also 1992De51): E(p)=14 MeV. Targets=200-500 mg/cm² thick. Measured $E\gamma$, $I\gamma$, $\gamma(\theta)(90^{\circ}$ and $50^{\circ})$, ce, (ce) γ -coin, (ce)(ce)-coin using four Compton-suppressed HPGe for γ rays, and two iron-free orange magnetic spectrometers for electrons at the cyclotron facility of Bonn University. 1996Le01 also report results from experiments for Coulomb excitation, (d,d'), (p,p'), and ²³¹U decay. Results were reanalyzed by 2003Wu03, as listed in their Table 2.

1992De51 (same group as 1996Le01): 22 γ rays reported from 84.3 to 564.6 keV, with the placement of six γ rays in a band. I γ (90°)/I γ (50°) were reported for ten γ rays, listed here in comments. Multipolarities of seven transitions were determined from conversion electron data, but no details are provided. The γ ray intensities were determined in coincidence with conversion electrons for three transitions. Evaluators assume that 1996Le01 and 2003Wu03 supersede data in 1992De51.

E(level) [†]	J ^π @	E(level) [†]	J ^π @	E(level) [†]	J ^π @	E(level) [†]	J ^π @
0.0&	3/2-	183.58 ^d 16	5/2+	351.2 ^{&} 7	$(13/2^{-})$	542.4 ^{<i>a</i>} 11	11/2+
9.183 ^{‡&} 19	$1/2^{-}$	189.0 ^b 4	$(13/2^+)$	351.93 ^{#e} 15	5/2-	550.9 <mark>&</mark> 8	$(17/2^{-})$
58.6 ^{&} 3	$7/2^{-}$	193.2 ^{&} 7	9/2-	392.5 ^a 4	9/2+	604.30 [#] <i>f</i> 19	$(3/2^{-})$
77.68 ^{&} 10	$5/2^{-}$	218.53 ^c 21	$7/2^{-}$	395.98 ^{#e} 14	7/2-	632.25 [#] <i>f</i> 20	$(5/2^{-})$
84.17 ^b 12	$5/2^{+}$	247.45 ^{#d} 16	7/2+	406.35 ^{#d} 24	$(11/2^+)$	678.1 ^{#f} 4	$(7/2^{-})$
101.408 ^{‡b} 4	$7/2^{+}$	275.03 ^{#c} 17	9/2-	409.7 ^{<i>a</i>} 9	7/2+	705.0 ^{<i>a</i>} 5	$(17/2^+)$
102.269 [‡]	$3/2^{+}$	304.7 ^{#d} 3	$(9/2^+)$	424.7 ^{#c} 3	$13/2^{-}$	734.3 ^{#f} 4	(9/2 ⁻)
111.87 <mark>b</mark> 16	$9/2^{+}$	317.9 ^a 6	$3/2^{+}$	450.57 ^{#e} 17	9/2-	785.5 ^{&} 5	$23/2^{-}$
168.7 ^{&} 3	$11/2^{-}$	320.22 ^{#e} 13	3/2-	520.4 ^{#c} 4	$(15/2^{-})$	787.4 <mark>&</mark> 9	$(21/2^{-})$
171.50 [#] 25	$11/2^{+}$	328.6 ^{&} 4	$15/2^{-}$	525.2 ^a 4	$13/2^{+}$	929.3 ^{<i>a</i>} 6	$21/2^{+}$
174.18 ^c 17	5/2-	344.78 ^{#c} 24	$11/2^{-}$	535.6 ^{&} 4	19/2-		

²³¹Pa Levels

[†] From a least-squares fit to γ -ray energies.

[‡] Level energy from the Adopted Levels, kept fixed for fitting the present level scheme.

[#] Level from 2003Wu03.

[@] As given in 1996Le01, based on multipolarity assignment from $(p,2n\gamma)$ experiment, and from Coulomb excitation results.

[&] Band(A): *π*1/2[530].

^{*a*} Band(B): $\pi 1/2[400] + \pi 1/2[660]$.

^{*b*} Band(C): $\pi 3/2[651]$.

^{*c*} Band(D): *π*5/2[512].

^d Band(E): π5/2[642].

^{*e*} Band(F): *π*3/2[532].

f Band(G): $\pi 3/2[521]$.

$\gamma(^{231}\text{Pa})$

E_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. <mark>&</mark>	Comments
(9.2 [#])	9.183	1/2-	0.0	3/2-		
(17.2 [#])	101.408	$7/2^{+}$	84.17	5/2+		
(18.1 [#])	102.269	$3/2^{+}$	84.17	$5/2^{+}$		
58.6 <i>3</i>	58.6	7/2-	0.0	3/2-	(E2)	$I\gamma=5.4$ 15 (coin with ce(L2)(110 γ)), 2.0 6 (coin with ce(L2)(160 γ)), 0.7 2 (coin with ce(L2)(207 γ)).

²³² Th(p,2n γ)	1996Le01,2003Wu03 (continued)
-----------------------------------	-------------------------------

$\gamma(^{231}\text{Pa})$ (continued)

E_{γ}^{\dagger}	Ι _γ @	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult.&	Comments
^x 60.5 [‡] 3	0.8 2						
(68.5 1)		77.68	5/2-	9.183	$1/2^{-}$		E_{γ} : from the Adopted Gammas.
72.8 [‡] 2	3.1 1	174.18	5/2-	101.408	7/2+		I γ =16 3 (coin with ce(L2)(59 γ)), 4.2 12 (coin with ce(L2)(110 γ)), 1.0 3 (coin with ce(L2)(160 γ)), 0.4 1 (coin with ce(L2)(207 γ)).
(77.5)		189.0	(13/2+)	111.87	9/2+		E_{γ} : from Coulomb excitation. Not seen in 232 Th(p,2n γ).
81.6 ^{<i>a</i>+} 3	1.3 ^{<i>a</i>} 1	183.58	5/2+	102.269	3/2+		
81.6 ^{<i>a</i>+} 3 84.0 4	1.3 ^{<i>u</i>} 1	183.58 84.17	5/2+ 5/2+	101.408 0.0	7/2+ 3/2 ⁻		Iγ=16 3 (coin with ce(L2)(59γ)), 7.8 23 (coin with ce(L2)(110γ)), 2.1 6 (coin with ce(L2)(160γ)), 1.6 5 (coin with ce(L2)(207γ)).
89.9 [‡] 3	12 2	174.18	5/2-	84.17	5/2+		
100.4 [‡] 8	0.8 2	275.03	9/2-	174.18	5/2-		
106.6 [‡] 6	1.0 6	218.53	$7/2^{-}$	111.87	9/2+		
110.2 2		168.7	11/2-	58.6	7/2-	(E2)	$I\gamma$ =80 8 (coin with ce(L2)(59 γ)), 23.6 24 (coin with ce(L2)(160 γ)), 3.3 10 (coin with ce(L2)(207 γ)).
(115.5)		193.2	9/2-	77.68	5/2-		E_{γ} : from Coulomb excitation. Not seen in 232 Th(p,2n γ).
116.8 [‡] 8	1.5 1	218.53	7/2-	101.408	7/2+		
121.1 [‡] 8	0.4 2	304.7	$(9/2^+)$	183.58	5/2+		
126.3 [‡] 5	0.6 2	344.78	$11/2^{-}$	218.53	7/2-		
x128.4 3		505.0	12/24	202 5	0.12+		$I\gamma$ =2.0 6 (coin with ce(L2)(110 γ)), 2.0 6 (coin with ce(L2)(160 γ)), 1.1 3 (coin with ce(L2)(207 γ)).
132.79		525.2	13/2	392.5	9/2		$1\gamma=6.5\ 20\ (\text{coin with } \text{ce}(\text{L2})(59\gamma)).$
134.4+ 2 134.6 9	1.9 1	218.53 193.2	9/2 ⁻	84.17 58.6	5/2* 7/2 ⁻		Iγ=12 3 (coin with ce(L2)(59γ)), <0.4 (coin with ce(L2)(110γ)), <0.4 (coin with ce(L2)(160γ)), <0.4 (coin with ce(L2)(207γ)).
135.7 [‡] 5	0.6 2	247.45	$7/2^{+}$	111.87	$9/2^{+}$		
136.4 [‡] 3	0.85 8	320.22	$3/2^{-}$	183.58	$5/2^{+}$		
^x 139.5 [‡] 5	0.6 2						
139.5 5		328.6	15/2-	189.0	(13/2+)		$I\gamma < 0.4$ (coin with ce(L2)(110γ)), <0.4 (coin with ce(L2)(160γ)), 1.6 5 (coin with ce(L2)(207γ)).
^141.9 4							$1\gamma = 4.6 \ 14 \ (\text{coin with ce}(L2)(110\gamma)), <0.4 \ (\text{coin with ce}(L2)(160\gamma)), 0.6 \ 2 \ (\text{coin with ce}(L2)(207\gamma)).$
145.9 [‡] 2	0.4 2	247.45	7/2+	101.408	7/2+		
^x 155.5 [‡] 3	0.6 2						
158.8 [‡] 5	0.4 2	406.35	$(11/2^+)$	247.45	7/2+		
160.0 2		328.6	15/2-	168.7	11/2-	(E2)	Iγ=100 10 (coin with ce(L2)(59γ)), 100 10 (coin with ce(L2)(110γ)), 8.6 26 (coin with ce(L2)(207γ)). Iγ(50°)/Iγ(90°)=1.00 4 (1992De51), normalized to 1.0 for Δ J=2, E2.
163.5 ^{<i>a</i>‡} 3	1.40 ^a 9	247.45	7/2+	84.17	5/2+		
163.5 ^{<i>a</i>‡} 3	1.40 ^a 9	275.03	9/2-	111.87	9/2+		
*171.5 4							$1\gamma=9\ 3\ (\text{coin with } \text{ce}(\text{L2})(59\gamma)),\ 3.6\ 12\ (\text{coin with } \text{ce}(\text{L2})(110\gamma)),\ <0.4\ (\text{coin with } \text{ce}(\text{L2})(160\gamma)),\ <0.4\ (\text{coin with } \text{ce}(\text{L2})(207\gamma)).$
173.5 [‡] 2	3.17 5	275.03	9/2-	101.408	7/2+		E_{γ} : 173.2 6 in 1996Le01, unplaced.

Continued on next page (footnotes at end of table)

232 Th(p,2n γ)	1996Le01,2003Wu03	(continued)
-----------------------------	-------------------	-------------

γ ⁽²³¹Pa) (continued)</sup>

E_{γ}^{\dagger}	Ι _γ @	E _i (level)	\mathbf{J}_i^π	E_{f}	\mathbf{J}_f^{π}	Mult. ^{&}	Comments
^x 176.8 6							Iγ=9 3 (coin with ce(L2)(59γ)), 1.2 4 (coin with ce(L2)(160γ)), 0.4 1 (coin with ce(L2)(207γ)). Iγ<0.4 (coin with ce(L2)(110γ)), 1.7 5 (coin with ce(L2)(10γ)), 1.7 5 (coin with ce(L2)(110γ)), 1.7 5 (coin with ce(L2)(110γ
180.0 9		705.0	$(17/2^+)$	525.2	13/2+		$Ce(L2)(160\gamma))$, 1.4 4 (coin with $Ce(L2)(20/\gamma))$. I γ =0.8 3 (coin with $Ce(L2)(110\gamma)$), 0.4 1 (coin with $Ce(L2)(160\gamma)$)
182.5 6		351.2	(13/2 ⁻)	168.7	11/2-		$I_{\gamma}=2.0 \ 6 \ (coin \ with \ ce(L2)(110\gamma)), \ <0.4 \ (coin \ with \ ce(L2)(100\gamma))$
^x 186.3 5							$I\gamma=4.5$ 15 (coin with ce(L2)(110 γ)), 1.4 4 (coin with ce(L2)(160 γ)), 0.8 3 (coin with ce(L2)(207 γ)).
^x 196.9 [‡] 2	1.0 <i>I</i>					(E1)	Mult.: from 1992De51. $I_{2}(50^{\circ})/I_{2}(90^{\circ})=1.23.9 (1992De51)$
196.9 <i>3</i>		525.2	13/2+	328.6	15/2-	(E1)	$I_{\gamma} = 30 \ 3 \ (\text{coin with ce}(L_2)(59\gamma)), \ 12.2 \ 25 \ (\text{coin with ce}(L_2)(110\gamma)), \ 12.0 \ 24 \ (\text{coin with ce}(L_2)(207\gamma)), \ 0.8 \ 3 \ (\text{coin with ce}(L_2)(207\gamma)), \ 0.8 \ (\text{coin with ce}(L$
199.7 <i>3</i>		550.9	(17/2 ⁻)	351.2	(13/2 ⁻)	(E2)	$I\gamma = 14 \ 3 \ (\text{coin with ce}(L2)(59\gamma)), 14.5 \ 29 \ (\text{coin with ce}(L2)(110\gamma)), 13.0 \ 26 \ (\text{coin with ce}(L2)(160\gamma)).$ $I\gamma(50^{\circ})/I\gamma(90^{\circ})=1.09 \ 7 \ (1992\text{De51}).$
203.3 [‡] 3 207.0 2	0.8 2	304.7 535.6	(9/2 ⁺) 19/2 ⁻	101.408 328.6	7/2+ 15/2 ⁻	(E2)	I γ =20 4 (coin with ce(L2)(59 γ)), 19.8 40 (coin with ce(L2)(110 γ)), 19.8 40 (coin with ce(L2)(160 γ)). I γ (50°)/I γ (90°)=0.98 5 (1992De51).
218.2 [‡] 2	4.1 <i>I</i>	320.22	3/2-	102.269	3/2+	(E1)	Ey=218.2 2, E1 in 1996Le01, unplaced. Iy=41 4 (coin with ce(L2)(59 γ)), 39 4 (coin with ce(L2)(110 γ)), 1.8 6 (coin with ce(L2)(160 γ)), 1.8 6 (coin with ce(L2)(207 γ)). Ex(50 $^{\circ}$) (Ly(00 $^{\circ}$) = 1.21 × (1002 De51, cy upplaced)
224.0 <i>4</i> 224.2 <i>9</i>		392.5 929.3	9/2 ⁺ 21/2 ⁺	168.7 705.0	11/2 ⁻ (17/2 ⁺)		$I\gamma(30 \)/17(30 \)=1.2177(1992De31, \gamma \text{ unplaced}).$ $I\gamma=4.0 \ 12 \ (\text{coin with ce}(L2)(110\gamma)).$ $I\gamma=0.8 \ 3 \ (\text{coin with ce}(L2)(160\gamma)), \ 0.4 \ 1 \ (\text{coin with ce}(L2)(207\gamma)).$
232.9 [‡] 2	2.8 1	344.78	11/2-	111.87	9/2+		$E\gamma=233.5 \ 4 \text{ in } 1996\text{Le}01, \text{ unplaced.}$ $I\gamma=3.2 \ 9 \ (\text{coin with } \text{ce}(\text{L2})(110\gamma)), \ 1.0 \ 3 \ (\text{coin with } \text{ce}(\text{L2})(160\gamma)), \ 0.6 \ 2 \ (\text{coin with } \text{ce}(\text{L2})(207\gamma)).$
235.8 ^{b‡} 2	0.96 ^b 10	320.22	3/2-	84.17	5/2+		I _γ : total intensity of 1.3 <i>I</i> between the placements from 320 and 425 levels divided by evaluators from I _γ (236 _γ)/I _γ (217 _γ)=0.233 9 in the Adopted Levels, Gammas dataset.
235.8 ^{b‡} 2 236.5 5	0.34 ^b 10	424.7 787.4	13/2 ⁻ (21/2 ⁻)	189.0 550.9	(13/2 ⁺) (17/2 ⁻)		I _y : 1.3 $1-0.96$ 10. I _Y =4 1 (coin with ce(L2)(59 γ)), 3.3 10 (coin with ce(L2)(160 γ)), 1.7 5 (coin with ce(L2)(207 γ)).
$x^{238.4}$ 4 240.2 5	0.4 2	317.9	3/2+	77.68	5/2-		$I\gamma=40$ 4 (coin with ce(L2)(59 γ)), <0.4 (coin with ce(L2)(110 γ)), <0.4 (coin with ce(L2)(160 γ)), 1.2
249.9 <i>3</i>		785.5	23/2-	535.6	19/2-		4 (coin with $ce(L2)(20/\gamma)$). I γ =3.4 10 (coin with $ce(L2)(110\gamma)$), 1.8 6 (coin with $ce(L2)(160\gamma)$), 1.8 6 (coin with $ce(L2)(207\gamma)$).
250.2 ^{<i>a</i>‡} 3	2.4 ^{<i>a</i>} 1	351.93	5/2-	102.269	3/2+		
250.2 ^{<i>a</i>‡} 3	2.4 ^{<i>a</i>} 1	351.93	5/2-	101.408	7/2+		
253.2 [‡] 2	2.30 5	424.7	13/2-	171.50	11/2+		$E\gamma=253.2 \ 3$ in 1996Le01, unplaced. $I\gamma=25 \ 3$ (coin with ce(L2)(59 γ)), <0.4 (coin with

Continued on next page (footnotes at end of table)

²³²Th(p,2nγ) **1996Le01,2003Wu03** (continued)

γ ⁽²³¹Pa) (continued)</sup>

${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{@}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.&	Comments
x255.3 2							$\frac{(ce(L2)(110\gamma)), 1.2 \ 4 \ (coin with \ ce(L2)(160\gamma)), 1.4 \ 4}{(coin with \ ce(L2)(207\gamma)).}$ $I\gamma=20 \ 4 \ (coin with \ ce(L2)(59\gamma)), 31.5 \ 32 \ (coin with \ ce(L2)(110\gamma)), 6.5 \ 20 \ (coin with \ ce(L2)(160\gamma)), (ce(L2)(160\gamma)), (ce(L2$
*259.8 8 267.8 [‡] 2	1 60 7	351 93	5/2-	84 17	5/2+		$1\gamma=32.3$ (coin with ce(L2)(59 γ)).
^x 271.0 4 ^x 274.6 4	1.00 /	551.75	5/2	04.17	5/2		$I\gamma$ =1.2 4 (coin with ce(L2)(207 γ)). $I\gamma$ =4.3 13 (coin with ce(L2)(110 γ)), <0.4 (coin with ce(L2)(160 γ)).
279.1 [‡] 2	1.46 7	450.57	9/2-	171.50	11/2+		
280.6 [‡] 3	0.5 2	632.25	$(5/2^{-})$	351.93	5/2-		
284.1 ^{<i>a</i>‡} 2	0.9 ^a 1	395.98	7/2-	111.87	9/2+		
284.1 ^{<i>a</i>‡} 2	0.9 ^a 1	604.30	$(3/2^{-})$	320.22	3/2-		
294.5 ^{<i>a</i>‡} 2	0.9 ^a 1	395.98	7/2-	101.408	$7/2^{+}$		
294.5 ^{<i>a</i>‡} 2	0.9 ^a 1	406.35	$(11/2^+)$	111.87	9/2+		
311.9 ^{<i>a</i>‡} 2	2.1 ^{<i>a</i>} 1	395.98	7/2-	84.17	5/2+		
311.9 ^{<i>a</i>‡} 2	2.1 ^{<i>a</i>} 1	632.25	$(5/2^{-})$	320.22	3/2-	(E1)	
*321.7 6	100			251.02	5 /0-	(EI)	$1\gamma = 6.4$ 19 (coin with ce(L2)(110 γ)), <0.4 (coin with ce(L2)(207 γ)).
$326.2^{+}3$	1.0 2	678.1	$(1/2^{-})$	351.93	$5/2^{-}$		
331.4* 2 332.0 9	0.8 1	520.4 409.7	(15/2) 7/2 ⁺	189.0 77.68	$(13/2^+)$ $5/2^-$		$I\gamma=3.6 \ 11 \ (coin \ with \ ce(L2)(110\gamma)), \ 1.4 \ 4 \ (coin \ with \ ce(L2)(160\gamma))$
333.8 <i>3</i>		392.5	9/2+	58.6	$7/2^{-}$		$I_{\gamma} = 100 \ I0 \ (coin \text{ with } ce(L2)(59\gamma)).$
338.3 ^{a‡} 3	0.5 ^a 2	450.57	9/2-	111.87	9/2+		
338.3 ^{a‡} 3	0.5 ^a 2	734.3	(9/2-)	395.98	7/2-		
349.2 5		542.4	11/2+	193.2	9/2-		$I\gamma < 0.4$ (coin with ce(L2)(110γ)), <0.4 (coin with ce(L2)(160γ)), 0.9 <i>3</i> (coin with ce(L2)(207γ)).
349.3 [‡] 2	2.3 1	450.57	9/2-	101.408	7/2+	(T-4)	
356.4 2		525.2	13/2*	168.7	11/2-	(E1)	$I\gamma = 68 / (\text{coin with ce}(L2)(59\gamma)), 67 / (\text{coin with ce}(L2)(110\gamma)).$ $I\gamma(50^{\circ})/I\gamma(90^{\circ}) = 1.22 7 (1992\text{De}51, \gamma \text{ unplaced}).$
^x 365.4 4							$I\gamma=54$ 5 (coin with ce(L2)(59 γ)).
376.4 3		705.0	$(17/2^+)$	328.6	15/2-	(E1)	$I\gamma=21\ 2\ (\text{coin with ce}(L2)(59\gamma)),\ 22.0\ 22\ (\text{coin with ce}(L2)(110\gamma)),\ 21.4\ 22\ (\text{coin with ce}(L2)(160\gamma)).$
393.8 5		929.3	21/2+	535.6	19/2-		$I_{\gamma}(50 \)/I_{\gamma}(50 \)=1.30 \ 8 \ (1992) = 0.51, \ \gamma \ \text{inplaced}.$ $I_{\gamma}=1.6 \ 5 \ (\text{coin with } \text{ce}(\text{L2})(110\gamma)), \ 2.4 \ 7 \ (\text{coin with } \text{ce}(\text{L2})(160\gamma)), \ 1.2 \ 4 \ (\text{coin with } \text{ce}(\text{L2})(207\gamma)).$
^x 403.9 [‡] 2	1.4 <i>1</i>						
^x 406.2 [‡] 2	1.1 <i>1</i>						
x415.6 3							$I\gamma$ =20 4 (coin with ce(L2)(59γ)), 32.7 33 (coin with ce(L2)(110γ)), 1.4 4 (coin with ce(L2)(160γ)). $I\gamma$ (50°)/ $I\gamma$ (90°)=1.05 10 (1992De51).
420.7 [‡] 2	1.3 <i>I</i>	604.30	$(3/2^{-})$	183.58	5/2+		
^x 459.6 5							$I\gamma=10.2 \ 31 \ (\text{coin with ce}(L2)(110\gamma)), \ 9.2 \ 28 \ (\text{coin with ce}(L2)(160\gamma)).$
^x 564.6 5							$17(50^{-})/17(90^{-})=1.58 \ 18 \ (1992De51).$ 10.2 31 (coin with ce(L2)(110 γ)).

²³²Th(p,2nγ) **1996Le01,2003Wu03** (continued)

$\gamma(^{231}\text{Pa})$ (continued)

[†] From 1996Le01, unless otherwise stated.

- ^(a) From coincidence with 84.2-keV ce(L1) (2003Wu03). Intensities in coin with ce(L2)(111 γ), ce(L2)(207 γ), ce(L2)(160 γ), and ce(L2)(59 γ) from 1996Le01 are listed in comments. 1992De51 give a general statement for uncertainty, 10% for strong lines and 30% for weak lines. Evaluators assign 10% for I γ >20, 20% for I γ =10-20, and 30% for I γ <10.
- & From ce and $\gamma(\theta)$ data (1996Le01,1992De51). Authors give definite assignments, but as full details of the ce measurements are not available, evaluators assign these in parentheses.
- ^a Multiply placed with undivided intensity.
- ^b Multiply placed with intensity suitably divided.

 $x \gamma$ ray not placed in level scheme.

[‡] From 2003Wu03.

[#] Rounded value from the Adopted Levels, Gammas dataset.

Level Scheme

Level Scheme	Legend
Intensities: Relative I_{γ}	c
& Multiply placed: undivided intensity given	\longrightarrow I _{γ} < 2%×I ^{max} _{γ}
@ Multiply placed: intensity suitably divided	$I_{\gamma} < 10\% \times I_{\gamma}^{max}$
	$\longrightarrow I_{\gamma} > 10\% \times I_{\gamma}^{max}$

$\frac{\text{Level Scheme (continued)}}{\text{Intensities: Relative }I_{\gamma}}$

& Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Legend

Intensities: Relative I_{γ}

& Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

 $--- \rightarrow \gamma$ Decay (Uncertain)

²³¹₉₁Pa₁₄₀

²³¹₉₁Pa₁₄₀

²³²Th(p,2nγ) 1996Le01,2003Wu03 (continued)

