Adopted Levels

History

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, Jagdish K. Tuli, and Edgardo Browne	NDS 185, 560 (2022)	31-Aug-2022

 $Q(\beta^-)=-2680\ 60;\ S(n)=7680\ 80;\ S(p)=3280\ 50;\ Q(\alpha)=6370\ 50$ 2021Wa16 S(2n)=14320\ 110,\ S(2p)=8850\ 50,\ Q(\varepsilon)=1820\ 50\ (2021Wa16).

1950Ma14: ²³¹Np produced and identified in ²³⁵U(d,6n),E=45-100 MeV at Berkeley, followed by chemical separation. From observation of α spectra from ²³¹Np decay, parent-daughter correlation of ²³¹Np and ²²⁷Pa was established. Measured half-life of the decay of ²³¹Np.

1973We08: ²³¹Np produced in ²³³U(d,4n). Measured $E\gamma$, $I\gamma$, half-life of the decay of ²³¹Np.

Theoretical calculations: consult the NSR database (www.nndc.bnl.gov/nsr/) for 23 primary references for the decay characteristics of ²³¹Np, and two for nuclear structure. These references are listed in 'document' records, which can be accessed through on-line

ENSDF database at www.nndc.bnl.gov/ensdf/. Additional information 1.

²³¹Np Levels

Cross Reference (XREF) Flags

 235 Am α decay (10.3 min)

E(level)	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
0	(5/2 ⁻)	48.8 min 2	A	$\%\alpha \approx 2$; $\%\varepsilon + \%\beta^+ \approx 98$ $\%\alpha = 2.0$ if α to g.s. of ²²⁷ Pa is favored. Measurements of 1950Ma14 established the α -decay mode, but only $\%\varepsilon/\%\alpha < 100$ (implying $\%\alpha > 1\%$) could be determined in their

 α -decay mode, but only $\Re \epsilon / \Re \alpha < 100$ (implying $\Re \alpha > 1\%$) could be determined in their experiment. Systematics suggest $\Re \alpha < 10$. Theoretical calculations of $T_{1/2}(\beta) > 100$ s and $T_{1/2}(\alpha) = 7.4 \times 10^5$ s (2019Mo01) suggest dominant $\epsilon + \beta^+$ decay mode.

E(level): in ²³⁵Am α decay, this level may be the ground state. However, 2004As12 set an upper limit of 15 keV for this level energy based upon detection efficiency for low-energy γ -rays and internal conversion coefficient of a corresponding E1 γ -ray transitions.

J^{π}: favored alpha decay from ²³⁵Am ($J^{\pi}=5/2^{-}$), assuming that this alpha transition feeds the ground state. Likely configuration is $\pi 5/2[523]$ (2004As12,2004Sa05). See ²³⁵Am α decay. Other: $5/2^{+}$ from systematics (2021Ko07).

T_{1/2}: from decay curves for 370.9- and 348.4-keV γ rays (1973We08). Other: 50 min 3 (1950Ma14) from α decay is in agreement.