235 Am α decay (10.3 min) 2004As12,2004Sa05

	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, Jagdish K. Tuli, and Edgardo Browne	NDS 185, 560 (2022)	31-Aug-2022

Parent: ²³⁵Am: E=0; $J^{\pi}=5/2^{-}$; $T_{1/2}=10.3 \text{ min } 6$; $Q(\alpha)=6576 \ 13$; % $\alpha \text{ decay}=0.40 \ 5$

2004As12, 2004Sa05 (also 2003Na10): ²³⁵Am isotope was produced in ²³³U(⁶Li,4n) reaction at E=34-42 MeV. Reaction products were stopped in He gas loaded with PbI₂ clusters, and transported into an ion source of ISOL by gas-jet stream. Products were mass separated. Measured Eα, Iα, γα coin with a Si PIN photodiode detector contained in a thin vacuum chamber with separate Be and Al windows. Positioned behind the Be window was a short coaxial Ge detector (ORTEC LOAX) to detect low-energy γ-rays, while an n-type Ge detector was placed behind the Al window which detected γ-rays from implanted nuclei through the Si wafer of the PIN detector.

Evaluator's note about the decay scheme: except for energy of one α transition, no other spectral information is available in literature.

²³¹Np Levels

E(level)	J^{π}	Comments	
0	(5/2-)	E(level): this level is assigned as the ground state, although, the possibility of 6457α feeding a low-lying level cannot be ruled out. $2004 \text{As} 12$ set an upper limit of 15 keV for this level energy based upon detection efficiency for low-energy γ -rays and internal conversion coefficient for a corresponding E1 γ -ray transition.	
α radiations			
Εα	E(level)	HF [†] Comments	
6457 12	0	1.2 E α : this α -transition feeds either the ground state or a low-lying state depopulated by γ transitions with E1 multipolarity and large internal conversion coefficients, as no γ -rays were observed in coincidence with the α particles.	

[†] The nuclear radius parameter $r_0(^{231}\text{Np})=1.495\ 30$, estimated by evaluators based on systematic trend of r_0 values for U and Pu in 2020Si16.

²³⁵Am-Q(α): From 2021Wa16.

²³⁵Am- $T_{1/2}$: From ²³⁵Am Adopted Levels in the ENSDF database (Feb 2014 update); no new reference since then for ²³⁵Am $T_{1/2}$ or J^{π} . Configuration= $\pi 5/2[523]$ (2004As12).

²³⁵Am- $\%\alpha$ decay: $\%\alpha$ =0.40 5 for ²³⁵Am α decay from Pu K x-ray and α particles measured simultaneously in a known geometry using calibrated detectors (2004Sa05,2000SaZO).