History

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, Jagdish K. Tuli, and Edgardo Browne	NDS 185, 560 (2022)	31-Aug-2022

Parent: ²³¹Ra: E=0.0; $J^{\pi}=(5/2^+)$; $T_{1/2}=103.9$ s 14; $Q(\beta^-)=2454$ 17; $\%\beta^-$ decay=100.0

 231 Ra-J^{π},T_{1/2}: From 231 Ra Adopted Levels. Level is interpreted as v5/2[622] (2001Fr05).

²³¹Ra-Q(β^{-}): From 2021Wa16.

2008Bo29 (also 2007Bo48, 2006Bo33): ²³¹Ra source was produced in spallation reaction: A=231 isobars from bombardment of a UC₂-C target with a 1 GeV proton beam from CERN PS-Booster. The source of ²³¹Ra was also obtained from the decay of ²³¹Fr, which was produced in the proton-induced fission of uranium, and the ions were accelerated to 60 keV then recorded on a magnetic tape after mass separation. Measured E γ , I γ , ce, $\gamma\gamma$ -, (ce) γ - and $\beta\gamma$ -coin, level half-lives by $\beta\gamma\gamma$ (t) fast timing technique, and half-life of ²³¹Ra decay. Conversion electrons were detected using a mini-orange spectrometer.

Note: compilers of the XUNDL dataset found some differences in values given in Table 1 and corresponding ones in Fig. 5 of 2008Bo29. According to e-mail reply of Nov 25, 2008 from M.J.G. Borge, the numbers listed in Table 1 of their paper are deemed as correct, when there are inconsistencies between Table 1 and Fig. 5.

1985Hi02: ²³¹Ra from decay of ²³¹Fr, the latter from mass separation of spallation products from 600-MeV protons on ²³⁸U. Measured E γ , I γ , $\beta\gamma$ -coin. Six γ rays reported but with no decay scheme proposed.

Overall the decay scheme of 231 Ra is poorly known, with little definite information about the multipolarities of γ transitions and limited data for intensities of low-energy transitions.

231	Ac	Leve	ls
231	Ac	Leve	ls

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} @	Comments
0.0	1/2+		Configuration = $\pi 1/2[400]$ (2008Bo29).
5.25 7	$(1/2^+, 3/2^+, 5/2^+)$		
18.35 7	$(3/2^{-})$		Configuration= $\pi 1/2[530]$ (2008Bo29).
37.96 6	$(3/2)^+$		$3/2^{+}$ member of configuration= $\pi 1/2[400]$ (2008Bo29).
61.70 7	$(3/2^+)$		Configuration= $\pi 3/2[651]$ (2008Bo29).
68.50 <i>6</i>	$(5/2^+)$		$5/2^+$ member of configuration= $\pi 3/2[651]$ (2008Bo29).
74.70 6	$(5/2^+)$		$5/2^+$ member of configuration= $\pi 1/2[400]$ (2008Bo29).
			J^{π} : 3/2 ⁺ ,5/2 ⁺ in 2008Bo29.
96.07? 5	(1/2, 3/2)		J^{π} : possible dipole γ to $1/2^+$.
115.97 6	$(3/2^{-})$	14.3 ns 11	Configuration= $\pi 3/2[532]$ (2008Bo29).
160.63 7	$(5/2^{-})$	<900 ps	$5/2^{-}$ member of configuration= $\pi 3/2[532]$ (2008Bo29).
237.90 6	$(3/2^+)$	57 ps 11	Configuration= $\pi 3/2[402]$ (2008Bo29).
245.73? 9	$(1/2^-, 3/2^-, 5/2^-)$		
266.68 6	$(3/2^{-})$	90 ps 20	$T_{1/2}$: from Tables 3 and 4 in 2008Bo29.
372.28 7	1/2, $3/2$		
415.24 /	(3/2, 5/2)		
449.48 8	(3/2, 5/2)		381.16 γ and 444.32 γ shown in Fig. 5 of 2008Bo29 are incorrect.
456.48? 10	$(3/2^+, 5/2^+)$	-54	$G_{22} = \frac{1}{2} 1$
4/1.38 8	(3/2) (1/2 - 3/2 -)	<54 ps	Configuration= $\pi 3/2[532]$ (2008B029).
473.24:11	(1/2, 3/2) 1/2+2/2+		
4/8.1/10	$\frac{1}{2}$, $\frac{3}{2}$		
405.097	(3/2, 3/2) $1/2^+ 3/2^+$		I^{π} , $3/2^+$ in 2008Bo20
512.06.0	1/2, $3/21/2^+ 3/2^+$		J^{π} : $3/2^{+}$ in 2008Bo29.
530 932 9	$(5/2^+)$		J = 3/2 III 2008D027. Configuration $-\pi 5/2[642]$ (2008Bo29)
595 14? 16	$(3/2^{-})$		$\cos(1000 - \pi 3/2[0+2])$
670 769 12	(<i>3</i> / <i>2</i>) #		
0/0.70? 15	#		
680.77 9	π 11		
824.85? 20	#		
847.2? 3	#		
848.95 14	#		

231 Ra β^- decay (103.9 s) 2008Bo29 (continued)

²³¹Ac Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	J ^{π‡}
870.1 5	#	1100.24? 20	#	1155.21? 23	#
912.1? 3	#	1114.91? 24	#	1248.4? <i>3</i>	#
931.41? 12	#	1137.9 4	#	1354.2? 5	#

[†] From least-squares fit to γ -ray energies. All the tentatively placed transitions were included in the fitting procedure. Uncertainties for E γ for the following poorly-fitted gamma-rays were doubled to a maximum of 0.2 keV: 106.48 γ and 260.82 γ from 267 level, and 417.55 γ from 486 level.

[‡] From the Adopted Levels, based on assignments in 2008Bo29 from multipolarity assignments, and from tentative configuration assignments in authors' Fig. 7, showing band structures.

[#] Possible β feeding from (5/2⁺) parent state suggests (3/2,5/2,7/2). In a few cases spin is further restricted to (3/2,5/2⁺) from possible γ to 1/2⁺ level in ²³¹Ac.

^(a) From $\beta\gamma\gamma$ (t) fast-timing technique (2008Bo29,2007Bo48).

β^{-} radiations

E(decay)	E(level)	Comments
(1100 17)	1354.2?	$I\beta = 0.7 \ 2, \log ft = 6.5 \ (2008Bo29).$
(1206 17)	1248.4?	$I\beta = 0.24.9, \log ft = 7.1 (2008Bo29).$
(1299 17)	1155.21?	$I\beta = 1.0 \ 3, \log ft = 6.6 \ (2008Bo29).$
(1316 17)	1137.9	$I\beta = 0.7 \ 2, \log ft = 6.8 \ (2008Bo29).$
(1339 17)	1114.91?	$I\beta = 0.8 \ 3, \log ft = 6.8 \ (2008Bo29).$
(1354 17)	1100.24?	$I\beta = 0.8 \ 3, \log ft = 6.8 \ (2008Bo29).$
(1523 17)	931.41?	$I\beta = 0.7 \ 2, \log ft = 7.1 \ (2008Bo29).$
(1542 17)	912.1?	$I\beta = 1.5 5$, log $ft = 6.7$ (2008Bo29).
(1584 17)	870.1	$I\beta = 0.3 \ I$, log $ft = 7.5 \ (2008Bo29)$.
(1605 17)	848.95	$I\beta = 1.5 5$, log $ft = 6.8$ (2008Bo29).
(1607 17)	847.2?	$I\beta = 0.5 \ 2, \log ft = 7.3 \ (2008Bo29).$
(1629 17)	824.85?	$I\beta = 0.5 \ 2, \log ft = 7.3 \ (2008Bo29).$
(1773 17)	680.77	$I\beta = 1.8 \ 6, \log ft = 6.9 \ (2008Bo29).$
(1783 17)	670.76?	$I\beta$ =0.30 <i>12</i> , log <i>ft</i> =7.7 (2008Bo29).
(1859 17)	595.14?	$I\beta$ =2.1 7, log ft =6.9 (2008Bo29).
(1923 17)	530.93?	$I\beta = 24 \ 8, \ \log ft = 5.9 \ (2008Bo29).$
(1941 17)	512.96	$I\beta = 11 \ 4 \ (2008Bo29).$
(1956 17)	498.05	$I\beta$ =3.9 13, log ft=6.7 (2008Bo29).
(1968 17)	485.69	$I\beta$ =4.5 15, log ft=6.7 (2008Bo29).
(1976 17)	478.17	$I\beta = 1.7 \ 6, \log ft = 7.1 \ (2008Bo29).$
(1981 17)	473.24?	$I\beta$ =2.2 8, log ft=7.0 (2008Bo29).
(1982 17)	471.58	$I\beta = 27 \ 10, \log ft = 5.9 \ (2008Bo29).$
(1998 17)	456.48?	$I\beta$ =2.5 8, log ft=6.9 (2008Bo29).
(2039 17)	415.24	$I\beta = 5.2, \log ft = 6.7 \ (2008Bo29).$
(2082 17)	372.28	$I\beta$ =4.2 <i>14</i> (2008Bo29).
(2216 17)	237.90	$I\beta = 1.2$ 7, log $ft = 7.5$ (2008Bo29).

 $\gamma(^{231}\mathrm{Ac})$

Measured E(Ac K_[x-rays)=87.66 5, I(Ac K_{α 2} x-rays)=90 *11* (2008Bo29), relative to 100 *11* for 54.29 γ , or to 73 *16* for 205.00 γ . Measured E(Ac K₁ x-rays)=90.86 5, I(Ac K_{α 2} x-rays)=141 *17* (2008Bo29), relative to 100 *11* for 54.29 γ , or to 73 *16* for 205.00 γ . Measured I(Ac K x-rays)=285 *15* (1985Hi02), relative to 100 *6* for the 204.98 γ .

Using the RADLST code, evaluators deduced x-ray intensities of 626 94 for 87.66 5 ($K_{\alpha 2}$) and 1018 152 for 90.86 6 ($K_{\alpha 1}$), which significantly disagree with the experimental values of 903 106 for 87.66 5 ($K_{\alpha 2}$) and 1411 165 for 90.86 6 ($K_{\alpha 1}$) given in 2008Bo29. This discrepancy suggests incorrect γ -ray multipolarities and therefore does not warrant either deducing a decay-scheme normalization factor or β^- intensities from γ -ray transition intensity balances.

The γ -normalization factor of 0.0758 *19* from 2008Bo29 is difficult to reproduce, thus omitted here, since several low-energy transitions have unknown multipolarities and mixing ratios, and placements of several transitions are uncertain.

Eγ	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α [@]	$I_{(\gamma+ce)}$	Comments
18.44 10	≈9.0	18.35	(3/2 ⁻)	0.0	1/2+	[E1]	6.29 13		α (L)=3.73 8; α (M)=1.95 4 α (N)=0.497 10; α (O)=0.0996 20; α (P)=0.01300 25; α (O)=0.000362 7
19.64 <i>10</i>	≈6.0	37.96	(3/2)+	18.35	(3/2 ⁻)	[E1]	5.29 11		$\alpha(L)=3.12$ 7; $\alpha(M)=1.65$ 4 $\alpha(N)=0.420$ 9; $\alpha(O)=0.0848$ 17; $\alpha(P)=0.01124$ 21; $\alpha(Q)=0.000322$ 6
21.0 ^b 4	<0.006	266.68	(3/2 ⁻)	245.73?	(1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻)	[M1]	3.3×10 ² 22	<0.7	Evaluators assume that $I\gamma < 7$, relative to 1000 for 54.29 γ quoted in 2008Bo29 is the transition intensity, not the photon intensity, as otherwise, with large conversion coefficient for the 21.0 transition, there will be intensity balance problems at the 245.7 level.
26.40 8	>0.9	498.05	1/2+,3/2+	471.58	(5/2 ⁻)	[E1]	3.90 7		α (L)=2.92 5; α (M)=0.743 <i>12</i> α (N)=0.191 3; α (O)=0.0396 7; α (P)=0.00561 9; α (Q)=0.000184 3 I_{γ} : >0.9 2 in 2008Bo29. Contribution of the 26-keV γ from Th is subtracted.
36.74 5	1.1 <i>1</i>	74.70	(5/2 ⁺)	37.96	$(3/2)^+$	[M1]	64.3 9		α (L)=48.6 7; α (M)=11.69 <i>17</i> α (N)=3.10 5; α (O)=0.721 <i>11</i> ; α (P)=0.1334 <i>20</i> ; α (Q)=0.01188 <i>18</i>
37.8 4	0.9 3	37.96	(3/2)+	0.0	1/2+	[M1]	59.1 <i>21</i>		$\alpha(L)=44.7 \ 16; \ \alpha(M)=10.7 \ 4$ $\alpha(N)=2.85 \ 10; \ \alpha(O)=0.663 \ 24; \ \alpha(P)=0.123 \ 5;$ $\alpha(Q)=0.0109 \ 4$ E_{γ} : seen only in coincidence spectrum (namely with 78.0-keV).
40.30 ^b 5	0.7 3	1155.21?		1114.91?		[D]	25 24		
41.27 5	9.7 19	115.97	(3/2 ⁻)	74.70	$(5/2^+)$	[E1]	1.197 17		$B(E1)\downarrow=1.8\times10^{-7}$ 4; $B(E1)(W.u.)=7.4\times10^{-6}$ 16 (2008Bo29)

					231 Ra β^- deca	y (103.9 s)	2008B	o29 (continued	1)
						$\gamma(^{231}\text{Ac})$ (co	ontinued)	
Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [‡]	δ [#]	$\alpha^{@}$	Comments
44.6 <i>1</i>	3.0 4	160.63	(5/2 ⁻)	115.97	(3/2 ⁻)	M1	_	36.3 5	$\begin{aligned} &\alpha(L)=0.902 \ 13; \ \alpha(M)=0.223 \ 4 \\ &\alpha(N)=0.0578 \ 9; \ \alpha(O)=0.01238 \ 18; \ \alpha(P)=0.00189 \ 3; \\ &\alpha(Q)=7.50\times10^{-5} \ 11 \\ &\alpha(L1)\exp+\alpha(L2)\exp=24 \ 6 \\ &B(M1)\downarrow>0.015 \ 5; \ B(M1)(W.u.)>0.008 \ 3 \ (2008Bo29) \\ &\alpha(L)=27.5 \ 5; \ \alpha(M)=6.60 \ 11 \\ &\alpha(N)=1.75 \ 3; \ \alpha(O)=0.407 \ 7; \ \alpha(P)=0.0753 \ 12; \end{aligned}$
47.45 5	3.8 5	115.97	(3/2 ⁻)	68.50	(5/2+)	[E1]		0.826 12	$\alpha(Q)=0.00671 \ 11$ $\delta(E2/M1)<0.04 \ \text{from } \alpha(L1+L2)\text{exp.}$ $B(E1)\downarrow=4.6\times10^{-8} \ 8; \ B(E1)(W.u.)=1.9\times10^{-6} \ 3$ (2008Bo29) $\alpha(L)=0.623 \ 9; \ \alpha(M)=0.1534 \ 22$
54.29 5	100 11	115.97	(3/2 ⁻)	61.70	(3/2+)	E1		0.577 8	$\alpha(N)=0.0398 \ 6; \ \alpha(O)=0.00859 \ 13; \ \alpha(P)=0.001336 \ 19; \alpha(Q)=5.61\times10^{-5} \ 8 \alpha(L1)exp+\alpha(L2)exp\leq0.11 B(E1)\downarrow=8.2\times10^{-7} \ 7; \ B(E1)(W.u.)=3.4\times10^{-5} \ 3 (2008Po20)$
56.50 5	0.8 <i>I</i>	61.70	(3/2+)	5.25	(1/2+,3/2+,5/2+)	E2(+M1)	>2.0	143 <i>14</i>	(2008Bo29) $\alpha(L)=0.436\ 7;\ \alpha(M)=0.1068\ 16$ $\alpha(N)=0.0277\ 4;\ \alpha(O)=0.00603\ 9;\ \alpha(P)=0.000954\ 14;$ $\alpha(Q)=4.22\times10^{-5}\ 6$ $E\gamma=55\ 1,\ I\gamma=47\ 10\ (1985Hi02).$ $\alpha(L1)exp+\alpha(L2)exp=58\ 17;\ \alpha(M)exp=31\ 9;$ $\alpha(N)exp=12\ 4$ $\alpha(L)=105\ 11;\ \alpha(M)=29\ 3$ $\alpha(N)=7.6\ 8;\ \alpha(O)=1.65\ 17;\ \alpha(P)=0.257\ 25;$ $\alpha(Q)=9.9\times10^{-4}\ 27$ $\delta(E2/M1)=1.6\ 5\ from\ \alpha(L1+L2)exp,\ 2.0\ 9\ from$ $\alpha(M)exp\ and\ >2.0\ from\ \alpha(N)exp.$ All experimental conversion coefficients deduced from $(ce)\gamma\ and\ \gamma\gamma\ coin\ with\ 54.29\gamma.$
63.23 ^b 5	0.8 1	68.50	(5/2+)	5.25	$(1/2^+, 3/2^+, 5/2^+)$	[M1,E2]		52 40	$\alpha(L)=38\ 29;\ \alpha(M)=10.3\ 80$ $\alpha(N)=2.7\ 22;\ \alpha(O)=0.60\ 46;\ \alpha(P)=0.096\ 69;$ $\alpha(O)=0.00143\ 98$
70.44 5	0.8 1	485.69	(3/2+,5/2+)	415.24	(3/2 ⁻ ,5/2 ⁻)	[E1]		0.288 4	$\alpha(z) = 0.00145 > 50$ $\alpha(L) = 0.218 3; \alpha(M) = 0.0531 8$ $\alpha(N) = 0.01383 20; \alpha(O) = 0.00304 5; \alpha(P) = 0.000495 7;$
77.17 7	1.5 3	237.90	(3/2+)	160.63	(5/2 ⁻)	E1		0.226 3	$\alpha(Q)=2.41\times10^{-3} 4$ $\alpha(L1)\exp+\alpha(L2)\exp\leq0.15$ $B(E1)\downarrow=4.4\times10^{-6} 12; B(E1)(W.u.)=1.8\times10^{-4} 5$ (2008Bo29) $\alpha(L)=0.1711 25; \alpha(M)=0.0416 6$ $\alpha(N)=0.01084 16; \alpha(O)=0.00239 4; \alpha(P)=0.000392 6;$ $\alpha(O)=1.09\times10^{-5} 2$
77.97 6	37.8 44	115.97	(3/2 ⁻)	37.96	$(3/2)^+$	E1		0.220 3	$\alpha(Q) = 1.96 \times 10^{-1.9} \text{ s}^{-1.96} s$

	231 Ra β^- decay (103.9 s)				$\mathbf{Ra}\beta^-\mathbf{decay}$	(103.9 s)	2008Bo29 (continued)				
	γ ⁽²³¹ Ac) (continued)										
E_{γ}	Iγ	E _i (level)	\mathbf{J}_i^{π}	E_{f}	J_f^π	Mult. [‡]	α [@]	Comments			
81.48 9	6.1 8	530.93?	(5/2+)	449.48	(3/2 ⁻ ,5/2 ⁻)	[E1]	0.196 <i>3</i>	B(E1) \downarrow =1.05×10 ⁻⁷ 15; B(E1)(W.u.)=4.3×10 ⁻⁶ 6 (2008Bo29) α (L)=0.1664 24; α (M)=0.0405 6 α (N)=0.01055 15; α (O)=0.00233 4; α (P)=0.000382 6; α (Q)=1.93×10 ⁻⁵ 3 α (L)=0.1481 22; α (M)=0.0360 6 α (N)=0.00938 14; α (O)=0.00207 3; α (P)=0.000342 5; α (Q)=1.753×10 ⁻⁵ 25			
or other	205	06.050	(1/2.2/2)	0.0	1/2+		2 0 10	I_{γ} : contribution from At x ray is subtracted.			
96.018 6	3.0 /	96.07?	(1/2,3/2)	0.0	1/2 '	[D]	2.0 19	$\alpha(L)=1.5 \ 14; \ \alpha(M)=0.4 \ 4$ $\alpha(N)=0.10 \ 9; \ \alpha(O)=0.022 \ 21; \ \alpha(P)=0.004 \ 4; \ \alpha(Q)=0.0004 \ 4$ From transition intensity balance at 96.1 level, 96.1 γ cannot be E2 or M2.			
106.48 ^b 9	5.0 8	266.68	(3/2 ⁻)	160.63	(5/2 ⁻)	[M1]	2.86 4	B(M1) \downarrow =6.4×10 ⁻⁴ 18; B(M1)(W.u.)=3.6×10 ⁻⁴ 10 (2008Bo29) α (L)=2.17 3; α (M)=0.520 8 α (N)=0.1380 20; α (O)=0.0321 5; α (P)=0.00593 9; α (Q)=0.000527 8 E _{\gamma} : somewhat poor fit, level-energy difference=106.05.			
113.40 8	1.1 <i>1</i>	485.69	(3/2+,5/2+)	372.28	1/2-,3/2-	[E1]	0.358 5				
^x 120.20 7	1.1 <i>1</i>							(ce) γ coin with 204.8 transition.			
121.96 8	2.8 3	237.90	(3/2+)	115.97	(3/2 ⁻)	[E1]	0.302 4	B(E1) \downarrow =2.1×10 ⁻⁶ 5; B(E1)(W.u.)=9×10 ⁻⁵ 2 (2008Bo29) α (K)=0.234 4; α (L)=0.0512 8; α (M)=0.01235 18 α (N)=0.00323 5; α (O)=0.000724 11; α (P)=0.0001230 18; α (O)=7.16×10 ⁻⁶ 10			
129.76 7	5.9 7	245.73?	(1/2 ⁻ ,3/2 ⁻ ,5/2 ⁻)	115.97	(3/2 ⁻)	M1+E2	5.8 24	α(L1)exp+α(L2)exp=1.31 40 α(K)=3.4 31; α(L)=1.76 53; α(M)=0.46 17 α(N)=0.122 44; α(O)=0.0272 91; α(P)=0.0045 12; α(Q)=1.7×10-4 14 Experimental conversion coefficient deduced from (ce)γ and γγ coin with 54.29γ gives mult=M1 or E2.			
134.38 ^b 10	0.9 2	372.28	1/2 ⁻ ,3/2 ⁻	237.90	(3/2 ⁺)	[E1]	0.239 4	α (K)=0.187 3; α (L)=0.0397 6; α (M)=0.00958 14 α (N)=0.00251 4; α (O)=0.000563 8; α (P)=9.63×10 ⁻⁵ 14; α (Q)=5.77×10 ⁻⁶ 9			
141.88 ^b 10	≤1.8	237.90	(3/2+)	96.07?	(1/2,3/2)	[D]	3.3 31	B(E1)↓≤7.6×10 ⁻⁷ 19; B(E1)(W.u.)≤3.1×10 ⁻⁵ 8 (2008Bo29) I _{γ} : ≤1.6 2. It may be also be contributed by sum line of 54.29 γ and 87 66 Ac x ray			
150.75 <i>10</i>	0.8 1	266.68	(3/2 ⁻)	115.97	(3/2 ⁻)	[M1]	5.30 8	B(M1) \downarrow =3.6×10 ⁻⁵ 10; B(M1)(W.u.)=2.0×10 ⁻⁵ 6 (2008Bo29) α (K)=4.25 6; α (L)=0.799 12; α (M)=0.192 3 α (N)=0.0508 8; α (O)=0.01182 17; α (P)=0.00219 3; α (O)=0.000194 3			
170.41 ^b 10	1.4 2	266.68	(3/2 ⁻)	96.07?	(1/2,3/2)	[D]	1.9 <i>18</i>	$\alpha(K)=1.6 \ 15; \ \alpha(L)=0.3 \ 3; \ \alpha(M)=0.07 \ 7$ $\alpha(N)=0.019 \ 18; \ \alpha(O)=0.004 \ 4; \ \alpha(P)=0.0008 \ 8; \ \alpha(Q)=7.E-5 \ 7$ $B(M1)\downarrow=4.4\times10^{-5} \ 12; \ B(M1)(W.u.)=2.4\times10^{-5} \ 7 \ (2008Bo29)$			

S

From ENSDF

	231 Ra β^- decay (103.9 s) 2008Bo29 (continued)										
						γ(²³¹ Α	c) (continued)	1			
E_{γ}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [‡]	α [@]	Comments			
177.39 8	1.9 3	415.24	(3/2 ⁻ ,5/2 ⁻)	237.90	(3/2 ⁺)	[E1]	0.1228 17	$\begin{aligned} &\alpha(K) = 0.0971 \ 14; \ \alpha(L) = 0.0195 \ 3; \ \alpha(M) = 0.00468 \ 7 \\ &\alpha(N) = 0.001229 \ 18; \ \alpha(O) = 0.000278 \ 4; \ \alpha(P) = 4.82 \times 10^{-5} \ 7; \\ &\alpha(Q) = 3.10 \times 10^{-6} \ 5 \end{aligned}$			
192.00 8	1.5 <i>2</i> 15.3 <i>17</i>	266.68	(3/2 ⁻)	74.70	(5/2 ⁺)	[E1]	0.1017 14	$\gamma\gamma$ coin with 54.3, 78.0, 232.7 transitions. B(E1) \downarrow =3.7×10 ⁻⁷ 9; B(E1)(W.u.)=1.5×10 ⁻⁵ 4 (2008Bo29) α (K)=0.0806 12; α (L)=0.01595 23; α (M)=0.00383 6 α (N)=0.001006 15; α (O)=0.000228 4; α (P)=3.97×10 ⁻⁵ 6; α (O)=2.60×10 ⁻⁶ 4			
195.09 <i>10</i> 198.18 <i>8</i>	8.1 <i>9</i> 62.2 <i>63</i>	680.77 266.68	(3/2 ⁻)	485.69 68.50	(3/2 ⁺ ,5/2 ⁺) (5/2 ⁺)	[D,E2] E1	1.4 <i>13</i> 0.0943 <i>13</i>	$\alpha(K) \exp = 0.06 \ 2; \ \alpha(L1) \exp + \alpha(L2) \exp = 0.07 \ 5 \\ B(E1) \downarrow = 1.4 \times 10^{-6} \ 3; \ B(E1)(W.u.) = 5.6 \times 10^{-5} \ 14 \ (2008Bo29) \\ \alpha(K) = 0.0749 \ 11; \ \alpha(L) = 0.01474 \ 21; \ \alpha(M) = 0.00354 \ 5 \\ \alpha(N) = 0.000929 \ 13; \ \alpha(O) = 0.000210 \ 3; \ \alpha(P) = 3.67 \times 10^{-5} \ 6; \\ \alpha(O) = 2.43 \times 10^{-6} \ 4$			
204.79 10	48 16	471.58	(5/2 ⁻)	266.68	(3/2 ⁻)	M1	2.23 3	$\begin{array}{l} \alpha(Q)=2.3\times10^{-4} \\ \alpha(K)\exp=1.77\ 24 \\ B(M1)\downarrow>0.013\ 2;\ B(M1)(W.u.)>7.4\times10^{-3}\ 13\ (2008Bo29) \\ \alpha(K)=1.79\ 3;\ \alpha(L)=0.335\ 5;\ \alpha(M)=0.0803\ 12 \\ \alpha(N)=0.0213\ 3;\ \alpha(O)=0.00495\ 7;\ \alpha(P)=0.000916\ 13; \\ \alpha(Q)=8.12\times10^{-5}\ 12 \\ \delta(E2/M1)=0.0\ +5-0\ from\ ce\ data. \\ \alpha(K)\exp:\ from\ acc\ accin \\ \end{array}$			
205.00 10	73 16	266.68	(3/2 ⁻)	61.70	(3/2+)	E1	0.0871 12	α(K)exp ≤ 0.23; α(L1)exp+α(L2)exp≤0.12 B(E1)↓=1.4×10 ⁻⁶ 3; B(E1)(W.u.)=5.9×10 ⁻⁵ 16 (2008Bo29) α(K)=0.0692 10; α(L)=0.01354 19; α(M)=0.00325 5 α(N)=0.000854 12; α(O)=0.000193 3; α(P)=3.38×10-5 5; α(Q)=2.25×10-6 4 Eγ=204.98 3, Iγ=100 6 (1985Hi02). For experimental conversion coefficients, contribution from ce(K) and ce(L1+L2) of 204 79x subtracted			
211.50 ^{<i>a</i>} 10	1.3 ^{<i>a</i>} 4	449.48	(3/2 ⁻ ,5/2 ⁻)	237.90	(3/2 ⁺)	[E1]	0.0809 11	$\alpha(K)=0.0643 \ 9; \ \alpha(L)=0.01253 \ 18; \ \alpha(M)=0.00301 \ 5$ $\alpha(N)=0.000790 \ 11; \ \alpha(O)=0.000179 \ 3; \ \alpha(P)=3.13\times10^{-5} \ 5;$ $\alpha(Q)=2.11\times10^{-6} \ 3$ I_{γ} : note that total intensity of the doublet=2.3 is shown in Fig. 5 of 2008Ba29			
211.50 ^{<i>a</i>} 10	1.0 ^{<i>a</i>} 4	478.17	1/2+,3/2+	266.68	(3/2 ⁻)	[E1]	0.0809 11	$\alpha(K)=0.0643 \ 9; \ \alpha(L)=0.01253 \ 18; \ \alpha(M)=0.00301 \ 5$ $\alpha(N)=0.000790 \ 11; \ \alpha(O)=0.000179 \ 3; \ \alpha(P)=3.13\times10^{-5} \ 5;$ $\alpha(Q)=2.11\times10^{-6} \ 3$			
219.69 15	9.1 12	237.90	(3/2+)	18.35	(3/2 ⁻)	[E1]	0.0740 10	B(E1) \downarrow =1.2×10 ⁻⁶ 3; B(E1)(W.u.)=4.8×10 ⁻⁵ 12 (2008Bo29) α (K)=0.0589 9; α (L)=0.01141 16; α (M)=0.00274 4 α (N)=0.000719 11; α (O)=0.0001631 23; α (P)=2.86×10 ⁻⁵ 4; α (Q)=1.94×10 ⁻⁶ 3			
*226.89 15	2.5 9										

From ENSDF

 $^{231}_{89}\mathrm{Ac}_{142}$ -6

 $^{231}_{89}\mathrm{Ac}_{142}\text{-}6$

231 Ra β^- decay (103.9 s) 2008Bo29 (continued)												
					$\gamma(2)$	³¹ Ac) (continu	ied)					
E_{γ}	I_{γ}	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult. [‡]	δ#	α [@]	Comments			
228.73 10	17.5 17	266.68	(3/2 ⁻)	37.96	(3/2)+	[E1]		0.0673 10	B(E1) \downarrow =2.5×10 ⁻⁷ 6; B(E1)(W.u.)=1.0×10 ⁻⁵ 3 (2008Bo29) α (K)=0.0537 8; α (L)=0.01033 15; α (M)=0.00248 4 α (N)=0.000651 10; α (O)=0.0001477 21;			
232.71 9	23.9 21	237.90	(3/2+)	5.25	(1/2 ⁺ ,3/2 ⁺ ,5/2 ⁺)	(E2(+M1))	>4	0.40 4	$\alpha(P)=2.59\times10^{-5} 4; \ \alpha(Q)=1.775\times10^{-6} 25$ $\alpha(K)\exp=0.12 6$ $\alpha(K)=0.15 4; \ \alpha(L)=0.181 3; \ \alpha(M)=0.0486 8$ $\alpha(N)=0.01292 20; \ \alpha(O)=0.00285 5; \ \alpha(P)=0.000460$ $9; \ \alpha(Q)=8.2\times10^{-6} 15$ Mult.: E1 is not ruled out within the uncertainty for $\alpha(K)\exp$			
237.86 15	2.6 3	237.90	(3/2+)	0.0	1/2+	[M1]		1.470 <i>21</i>	B(H)(=0.0025 4; B(M1)(W.u.)=0.0014 2 (2008Bo29) $\alpha(K)=1.180 \ 17; \ \alpha(L)=0.220 \ 4; \ \alpha(M)=0.0527 \ 8$ $\alpha(N)=0.01398 \ 20; \ \alpha(O)=0.00325 \ 5; \ \alpha(P)=0.000601$ $9; \ \alpha(O)=5.33\times10^{-5} \ 8$			
247.65 15	12.5 [†] <i>13</i>	485.69	(3/2 ⁺ ,5/2 ⁺)	237.90	(3/2+)	M1(+E2)	<0.8	0.9 4	$\begin{aligned} &\alpha(K) \exp[=0.87\ 22;\ \alpha(L)) \exp[+\alpha(L2) \exp[=0.31\ 14] \\ &\alpha(K) = 0.7\ 4;\ \alpha(L) = 0.174\ 23;\ \alpha(M) = 0.043\ 4] \\ &\alpha(N) = 0.0115\ 10;\ \alpha(O) = 0.0026\ 3;\ \alpha(P) = 0.00047\ 8; \\ &\alpha(Q) = 3.1 \times 10^{-5}\ 17] \\ &\delta(E2/M1)\ \text{from BriccMixing for a maximum of} \\ &\text{reduced } \chi^2 = 2. \end{aligned}$			
x249.49 10 254.57 10 x256.79 15	2.7 4 16.5 <i>1</i> 6 2.2 <i>3</i>	415.24	(3/2 ⁻ ,5/2 ⁻)	160.63	(5/2 ⁻)	M1		1.217 <i>17</i>	α (K)exp=1.07 26; α (L1)exp+ α (L2)exp=0.34 14 α (K)=0.977 14; α (L)=0.182 3; α (M)=0.0436 7 α (N)=0.01157 17; α (O)=0.00269 4; α (P)=0.000497 7; α (Q)=4.41×10 ⁻⁵ 7 δ (E2/M1)=0.0 +5-0 from ce data. Placement from 372 level shown in Fig. 5 of			
260.82 10	15.8 <i>15</i>	266.68	(3/2 ⁻)	5.25	(1/2+,3/2+,5/2+)	[E1]		0.0497 7	2008Bo29 is incorrect. B(E1) \downarrow =1.5×10 ⁻⁷ 4; B(E1)(W.u.)=6.2×10 ⁻⁶ 16 (2008Bo29) α (K)=0.0398 6; α (L)=0.00751 11; α (M)=0.00180 3 α (N)=0.000472 7; α (O)=0.0001075 15; α (P)=1.90×10 ⁻⁵ 3; α (Q)=1.336×10 ⁻⁶ 19 E _y : poor fit, Level-energy difference=261.43.			
275.38 <i>10</i> 288.94 <i>10</i>	1.6 6 3.0 4	1100.24? 449.48	(3/2 ⁻ ,5/2 ⁻)	824.85? 160.63	(5/2-)	[D,E2] M1		0.51 <i>47</i> 0.857 <i>12</i>	$\alpha(K) \exp = 0.87 \ 26$ $\alpha(K) = 0.688 \ 10; \ \alpha(L) = 0.1280 \ 18; \ \alpha(M) = 0.0306 \ 5$ $\alpha(N) = 0.00813 \ 12; \ \alpha(O) = 0.00189 \ 3; \ \alpha(P) = 0.000350$ $5; \ \alpha(Q) = 3.10 \times 10^{-5} \ 5$ $\delta(E2/M1) = 0.0 \ +6-0 \ \text{from ce data.}$			

²³¹₈₉Ac₁₄₂-7

				2	231 Ra β^- deca	y (103.9 s)	2008Bo2	29 (continued)
						γ ⁽²³¹ Ac)	(continued)	
Eγ	I_{γ}	E_i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	J_f^π	Mult. [‡]	α [@]	Comments
295.74 15	1.9 5	456.48?	(3/2+,5/2+)	160.63	(5/2 ⁻)	[E1]	0.0373 5	Experimental conversion coefficient deduced from (ce) γ - and $\gamma\gamma$ -coin with 54.29 γ . $\alpha(K)=0.0300\ 5;\ \alpha(L)=0.00557\ 8;\ \alpha(M)=0.001330\ 19$ $\alpha(N)=0.000350\ 5;\ \alpha(O)=7.98\times10^{-5}\ 12;\ \alpha(P)=1.417\times10^{-5}\ 20;$
299.10 <i>15</i>	6.6 7	415.24	(3/2 ⁻ ,5/2 ⁻)	115.97	(3/2 ⁻)	M1	0.780 <i>11</i>	$\begin{aligned} &\alpha(Q) = 1.023 \times 10^{-5} IS \\ &\alpha(K) \exp = 1.01 \ 35 \\ &\alpha(K) = 0.626 \ 9; \ \alpha(L) = 0.1163 \ 17; \ \alpha(M) = 0.0278 \ 4 \\ &\alpha(N) = 0.00739 \ 11; \ \alpha(O) = 0.001717 \ 25; \ \alpha(P) = 0.000318 \ 5; \\ &\alpha(Q) = 2.81 \times 10^{-5} \ 4 \\ &\delta(E2/M1) = 0.0 \ +6 - 0 \ \text{from ce data.} \end{aligned}$
x313.50 <i>10</i> 325.12 <i>15</i>	1.6 <i>3</i> 2.5 <i>3</i>	485.69	(3/2+,5/2+)	160.63	(5/2 ⁻)	[E1]	0.0303 4	$\alpha(K)=0.0244$ 4; $\alpha(L)=0.00446$ 7; $\alpha(M)=0.001066$ 15 $\alpha(N)=0.000280$ 4; $\alpha(O)=6.41\times10^{-5}$ 9; $\alpha(P)=1.141\times10^{-5}$ 16; $\alpha(O)=8.39\times10^{-7}$ 12
355.66 20	4.0 7	471.58	(5/2 ⁻)	115.97	(3/2 ⁻)	M1	0.485 7	$\alpha(Q)=8.39\times10^{-12}$ $\alpha(K)\exp=0.60\ 20$ $B(M1)\downarrow>2.1\times10^{-4}\ 5;\ B(M1)(W.u.)>1.2\times10^{-4}\ 3\ (2008Bo29)$ $\alpha(K)=0.390\ 6;\ \alpha(L)=0.0721\ 11;\ \alpha(M)=0.01727\ 25$ $\alpha(N)=0.00458\ 7;\ \alpha(O)=0.001065\ 15;\ \alpha(P)=0.000197\ 3;$ $\alpha(Q)=1.745\times10^{-5}\ 25$
357.26 10	19.3 <i>18</i>	473.24?	(1/2 ⁻ ,3/2 ⁻)	115.97	(3/2 ⁻)	M1	0.479 7	$\delta(\text{E2/M1})=0.0 +6-0 \text{ from ce data.} \\ \alpha(\text{K})\exp=0.60 \ 20 \\ \alpha(\text{K})=0.385 \ 6; \ \alpha(\text{L})=0.0713 \ 10; \ \alpha(\text{M})=0.01705 \ 24 \\ \alpha(\text{N})=0.00452 \ 7; \ \alpha(\text{O})=0.001052 \ 15; \ \alpha(\text{P})=0.000195 \ 3; \\ \alpha(\text{Q})=1.724 \times 10^{-5} \ 25 \\ \delta(\text{E2/M1})=0.0 +6-0 \text{ from ce data.} \end{cases}$
369.52 30	14.8 [†] 26	485.69	(3/2 ⁺ ,5/2 ⁺)	115.97	(3/2 ⁻)	[E1]	0.0229 3	α (K)=0.0185 3; α (L)=0.00333 5; α (M)=0.000795 12 α (N)=0.000209 3; α (O)=4.79×10 ⁻⁵ 7; α (P)=8.57×10 ⁻⁶ 12; α (Q)=6.45×10 ⁻⁷ 9
372.27 10	45.5 [†] <i>43</i>	372.28	1/2 ⁻ ,3/2 ⁻	0.0	1/2+	E1	0.0225 3	$\alpha(K) \exp = 0.021 \ I2$ $\alpha(K) = 0.0182 \ 3; \ \alpha(L) = 0.00328 \ 5; \ \alpha(M) = 0.000781 \ I1$ $\alpha(N) = 0.000206 \ 3; \ \alpha(O) = 4.71 \times 10^{-5} \ 7; \ \alpha(P) = 8.43 \times 10^{-6} \ I2;$ $\alpha(Q) = 6.35 \times 10^{-7} \ 9$
375.72 ^b 10	6.8 9	848.95		473.24?	$(1/2^{-}, 3/2^{-})$	[D,E2]	0.25 23	
381.16 ^b 30	1.1 <i>1</i>	912.1?		530.93?	(5/2+)	[D,E2]	0.21 19	E γ =381.76, I γ =3.0 in Fig. 5 of 2008Bo29 is incorrect. In Fig. 5 of 2008Bo29, this γ is also shown from 449 level.
381.76 ^b 15	3.0 5	456.48?	(3/2 ⁺ ,5/2 ⁺)	74.70	(5/2+)	[M1]	0.400 6	$ \begin{aligned} &\alpha(\mathbf{K}) = 0.321 \ 5; \ \alpha(\mathbf{L}) = 0.0594 \ 9; \ \alpha(\mathbf{M}) = 0.01422 \ 20 \\ &\alpha(\mathbf{N}) = 0.00377 \ 6; \ \alpha(\mathbf{O}) = 0.000877 \ 13; \ \alpha(\mathbf{P}) = 0.0001622 \ 23; \\ &\alpha(\mathbf{Q}) = 1.437 \times 10^{-5} \ 21 \end{aligned} $
387.99 ^b 15	4.5 12	456.48?	(3/2 ⁺ ,5/2 ⁺)	68.50	(5/2+)	[M1]	0.383 6	$\begin{array}{l} \alpha(\mathrm{K}) = 0.308 \ 5; \ \alpha(\mathrm{L}) = 0.0568 \ 8; \ \alpha(\mathrm{M}) = 0.01360 \ 19 \\ \alpha(\mathrm{N}) = 0.00361 \ 5; \ \alpha(\mathrm{O}) = 0.000839 \ 12; \ \alpha(\mathrm{P}) = 0.0001552 \ 22; \\ \alpha(\mathrm{Q}) = 1.375 \times 10^{-5} \ 20 \\ \mathrm{I}_{\gamma}: \ \text{doublet, contribution from Th subtracted.} \end{array}$

²³¹₈₉ Ac₁₄₂-8

				2:	31 Ra β^- decay (103)	3.9 s) 2	008Bo29 (co	ontinued)
					γ ⁽²³¹	Ac) (cont	inued)	
E_{γ}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [‡]	α [@]	Comments
394.90 <i>15</i>	12.7 13	456.48?	(3/2+,5/2+)	61.70	(3/2+)	M1	0.365 5	$\begin{aligned} &\alpha(\text{K}) \text{exp} = 0.25 \ 15 \\ &\alpha(\text{K}) = 0.293 \ 5; \ \alpha(\text{L}) = 0.0542 \ 8; \ \alpha(\text{M}) = 0.01296 \ 19 \\ &\alpha(\text{N}) = 0.00344 \ 5; \ \alpha(\text{O}) = 0.000799 \ 12; \ \alpha(\text{P}) = 0.0001478 \ 21; \\ &\alpha(\text{Q}) = 1.310 \times 10^{-5} \ 19 \\ &\delta(\text{E2/M1}) = 0.5 \ +14 - 5 \ \text{from ce data.} \end{aligned}$
396.92 ^{&} 15	5.7 18	415.24	(3/2 ⁻ ,5/2 ⁻)	18.35	(3/2 ⁻)	M1	0.360 5	 α(K)exp=0.25 15 α(K)=0.289 4; α(L)=0.0534 8; α(M)=0.01278 18 α(N)=0.00339 5; α(O)=0.000788 11; α(P)=0.0001458 21; α(Q)=1.292×10⁻⁵ 19 δ(E2/M1)=0.4 +14-4 from ce data. I_γ: contributions from a 397.3-keV γ in Ra decay and 396.9-keV γ from Th subtracted. 2008Bo29 placed 396.92γ from the 415 level only in Tables 1 and 2, but in Fig. 1 and Table 4, placement was also shown from 471 level. The latter placement appears incorrect, as implied multipolarity of E1 for this placement is inconsistent with M1 from α(K) exp data in authors' Table 2. However, possibility of a small component of the 396.9 γ ray from the 471.6 level is not precluded. Evaluators assign the intensity given in 2008Bo29 to the placement from 415 level only.
396.92 ^{&b} 15	20.1.20	471.58	(5/2 ⁻)	74.70	$(5/2^+)$		0.0100.0	
403.03 15	30.1 29	4/1.58	(5/2)	68.50	(5/2*)	[E1]	0.0190 3	B(E1) \downarrow >1.2×10 ⁻⁷ 4; B(E1)(W.u.)>5.0×10 ⁻⁷ 10 (2008B629) α (K)=0.01540 22; α (L)=0.00275 4; α (M)=0.000654 10 α (N)=0.0001723 25; α (O)=3.95×10 ⁻⁵ 6; α (P)=7.08×10 ⁻⁶ 10; α (O)=5.41×10 ⁻⁷ 8
409.89 <i>10</i>	108 <i>10</i>	471.58	(5/2 ⁻)	61.70	(3/2+)	E1	0.0184 3	$\alpha(K) \exp < 0.035$ B(E1) $\downarrow > 4.1 \times 10^{-7} 8$; B(E1)(W.u.)=1.7×10 ⁻⁵ 3 (2008Bo29) $\alpha(K) = 0.01487 21$; $\alpha(L) = 0.00265 4$; $\alpha(M) = 0.000630 9$ $\alpha(N) = 0.0001660 24$; $\alpha(O) = 3.80 \times 10^{-5} 6$; $\alpha(P) = 6.83 \times 10^{-6} 10$; $\alpha(Q) = 5.23 \times 10^{-7} 8$ E2 is not ruled out from $\alpha(K) \exp$. E $\gamma = 409.92 9$, I $\gamma = 108 12$ (1985Hi02).
417.55 ^b 10	1.4 2	485.69	(3/2+,5/2+)	68.50	(5/2+)	[M1]	0.314 5	$\alpha(K)=0.252 \ 4; \ \alpha(L)=0.0465 \ 7; \ \alpha(M)=0.01113 \ 16$ $\alpha(N)=0.00295 \ 5; \ \alpha(O)=0.000686 \ 10; \ \alpha(P)=0.0001270 \ 18;$ $\alpha(Q)=1.125\times10^{-5} \ 16$ E : somewhat poor fit, level energy difference=417.19
425.02 10	2.3 5	670.76?		245.73?	$(1/2^-, 3/2^-, 5/2^-)$	[D,E2]	0.16 14	L_{γ} . somewhat poor in, iever-energy unterence=417.19.
429.62 15	11.0 14	498.05	1/2+,3/2+	68.50	(5/2 ⁺)	[M1]	0.290 4	$\begin{aligned} &\alpha(\text{K}) = 0.234 \ 4; \ \alpha(\text{L}) = 0.0431 \ 6; \ \alpha(\text{M}) = 0.01030 \ 15 \\ &\alpha(\text{N}) = 0.00273 \ 4; \ \alpha(\text{O}) = 0.000635 \ 9; \ \alpha(\text{P}) = 0.0001175 \ 17; \\ &\alpha(\text{Q}) = 1.041 \times 10^{-5} \ 15 \end{aligned}$
432.00 ^b 30 434.50 15	3.6 5 14.3 <i>13</i>	847.2? 595.14?	(3/2-)	415.24 160.63	$(3/2^{-}, 5/2^{-})$ $(5/2^{-})$	[D,E2] M1	0.15 <i>14</i> 0.282 <i>4</i>	$\alpha(K) \exp = 0.28 \ 9$

From ENSDF

I

					231 Ra β^- d	lecay (103	.9 s) 2008Bo	D29 (continued)
γ ⁽²³¹ Ac) (continued)								
E_{γ}	Iγ	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [‡]	α [@]	Comments
								$\begin{aligned} \alpha(\mathbf{K}) = 0.227 \ 4; \ \alpha(\mathbf{L}) = 0.0418 \ 6; \ \alpha(\mathbf{M}) = 0.00999 \ 14 \\ \alpha(\mathbf{N}) = 0.00265 \ 4; \ \alpha(\mathbf{O}) = 0.000616 \ 9; \ \alpha(\mathbf{P}) = 0.0001139 \ 16; \\ \alpha(\mathbf{Q}) = 1.010 \times 10^{-5} \ 15 \\ \delta(\mathbf{F}_2/\mathbf{M}) = 0 \ 0 \ +6 = 0 \ \text{from ce data} \end{aligned}$
442.90 10	4.3 6	680.77		237.90	$(3/2^+)$	[D,E2]	0.15 12	$0(E_2/MT) = 0.0 \pm 0^{-0}$ from ce data.
444.32 ^b 10	3.2 6	512.96	1/2+,3/2+	68.50	(5/2+)	[M1]	0.265 4	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.213 \ 3; \ \alpha(\mathrm{L}) = 0.0393 \ 6; \ \alpha(\mathrm{M}) = 0.00940 \ 14 \\ \alpha(\mathrm{N}) = 0.00249 \ 4; \ \alpha(\mathrm{O}) = 0.000579 \ 9; \ \alpha(\mathrm{P}) = 0.0001072 \ 15; \\ \alpha(\mathrm{Q}) = 9.50 \times 10^{-6} \ 14 \end{array} $
445 74 10	196	021 419		195 (0	(210 + 510 +)		0 15 12	In Fig. 5 of 2008Bo29, this γ is also shown from 449 level.
445.74 <i>10</i> 456.19 <i>15</i>	4.8 0 67.6 <i>61</i>	931.41? 530.93?	(5/2+)	485.69 74.70	$(3/2^+, 5/2^+)$ $(5/2^+)$	[D,E2] M1	0.15 12 0.247 4	α (K)exp=0.28 6; α (L1)exp+ α (L2)exp=0.04 2 α (K)=0.199 3; α (L)=0.0366 6; α (M)=0.00875 13
								α (N)=0.00232 4; α (O)=0.000539 8; α (P)=9.98×10 ⁻⁵ 14; α (Q)=8.85×10 ⁻⁶ 13 δ (E2/M1)=0.0 +4-0 from ce data. E γ =456.2 2, I γ =64 7 (1985Hi02).
462.38 15	53.4 48	530.93?	(5/2+)	68.50	(5/2+)	M1	0.238 4	$\begin{aligned} &\alpha(\text{K}) \text{exp} = 0.21 \ 5; \ \alpha(\text{L}1) \text{exp} + \alpha(\text{L}2) \text{exp} = 0.06 \ 3 \\ &\alpha(\text{K}) = 0.192 \ 3; \ \alpha(\text{L}) = 0.0353 \ 5; \ \alpha(\text{M}) = 0.00843 \ 12 \\ &\alpha(\text{N}) = 0.00224 \ 4; \ \alpha(\text{O}) = 0.000520 \ 8; \ \alpha(\text{P}) = 9.62 \times 10^{-5} \ 14; \\ &\alpha(\text{Q}) = 8.53 \times 10^{-6} \ 12 \end{aligned}$
467.39 15	13.6 20	485.69	(3/2+,5/2+)	18.35	(3/2 ⁻)	[E1]	0.01399 20	Eγ=462.4 2, Iγ=46 6 (1985Hi02). δ (E2/M1)=0.0 +5-0 from ce data. α (K)=0.01136 <i>16</i> ; α (L)=0.00199 <i>3</i> ; α (M)=0.000473 <i>7</i> α (N)=0.0001247 <i>18</i> ; α (O)=2.86×10 ⁻⁵ <i>4</i> ; α (P)=5.16×10 ⁻⁶ <i>8</i> ;
469.23 15	90.9 85	530.93?	(5/2+)	61.70	(3/2+)	M1	0.229 3	α (Q)=4.04×10 ⁻⁷ 6 α (K)exp=0.21 5; α (L1)exp+ α (L2)exp=0.04 2 α (K)=0.184 3; α (L)=0.0339 5; α (M)=0.00810 12
								α (N)=0.00215 3; α (O)=0.000500 7; α (P)=9.24×10 ⁻⁵ 13; α (Q)=8.20×10 ⁻⁶ 12 δ (E2/M1)=0.0 +5-0 from ce data. E γ =469.3 2, I γ =81.6 (1985Hi02)
473.40 ^b 30	2.8 6	473.24?	(1/2 ⁻ ,3/2 ⁻)	0.0	1/2+	[E1]	0.01363 19	$\alpha(K)=0.01108 \ 16; \ \alpha(L)=0.00194 \ 3; \ \alpha(M)=0.000460 \ 7 \\ \alpha(N)=0.0001213 \ 17; \ \alpha(O)=2.79\times10^{-5} \ 4; \ \alpha(P)=5.02\times10^{-6} \ 7; \\ \alpha(O)=3.04\times10^{-7} \ 6$
475.29 15	32.3 <i>31</i>	512.96	1/2+,3/2+	37.96	(3/2)+	M1	0.221 3	$\alpha(Q) = 5.94 \times 10^{-6} 0$ $\alpha(K) \exp = 0.21 6$ $\alpha(K) = 0.1780 25; \ \alpha(L) = 0.0327 5; \ \alpha(M) = 0.00783 11$ $\alpha(N) = 0.00207 3; \ \alpha(O) = 0.000483 7; \ \alpha(P) = 8.93 \times 10^{-5} 13;$ $\alpha(Q) = 7.92 \times 10^{-6} 12$
478.15 15	14.8 <i>21</i>	478.17	1/2+,3/2+	0.0	1/2+	M1	0.218 3	δ (E2/M1)=0.0 +6-0 from ce data. α (K)exp=0.15 6 α (K)=0.1751 25; α (L)=0.0322 5; α (M)=0.00770 11 α (N)=0.00204 3; α (O)=0.000475 7; α (P)=8.78×10 ⁻⁵ 13;

l

10

					231 Ra β^- decay (1	03.9 s)	2008Bo29 (co	ntinued)
$\gamma(^{231}\text{Ac})$ (continued)								
Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [‡]	α [@]	Comments
					<u> </u>			$\alpha(Q)=7.79\times10^{-6}$ 11 $\delta(E2/M1)=0.5 +8-5$ from ce data. I_{γ} : doublet. Contribution from Ra is subtracted.
481.74 ⁰ 30 494.57 30	2.5 5 2.8 6	931.41? 512.96	1/2+,3/2+	449.48 18.35	$(3/2^-, 5/2^-)$ $(3/2^-)$	[D,E2] [E1]	0.11 <i>10</i> 0.01247 <i>18</i>	$\alpha(K)=0.01015 \ I5; \ \alpha(L)=0.001767 \ 25; \ \alpha(M)=0.000419 \ 6$ $\alpha(N)=0.0001105 \ I6; \ \alpha(O)=2.54\times10^{-5} \ 4; \ \alpha(P)=4.59\times10^{-6} \ 7;$ $\alpha(O)=3.62\times10^{-7} \ 5$
498.20 <i>15</i>	22.7 21	498.05	1/2+,3/2+	0.0	1/2+	M1	0.195 3	$\alpha(K) = 0.164 \times 10^{-5}$ $\alpha(K) = 0.1569 \ 22; \ \alpha(L) = 0.0288 \ 4; \ \alpha(M) = 0.00689 \ 10$ $\alpha(N) = 0.00183 \ 3; \ \alpha(O) = 0.000425 \ 6; \ \alpha(P) = 7.86 \times 10^{-5} \ 11;$ $\alpha(Q) = 6.97 \times 10^{-6} \ 10$ $\delta(E2/M1) = 0.0 \ +9-0 \ \text{from ce data.}$
513.00 15	65.9 [†] 86	512.96	1/2+,3/2+	0.0	1/2+	M1	0.180 3	$\begin{aligned} &\alpha(\text{K}) \exp = 0.14 \ 4 \\ &\alpha(\text{K}) = 0.1451 \ 21; \ \alpha(\text{L}) = 0.0266 \ 4; \ \alpha(\text{M}) = 0.00637 \ 9 \\ &\alpha(\text{N}) = 0.001688 \ 24; \ \alpha(\text{O}) = 0.000392 \ 6; \ \alpha(\text{P}) = 7.26 \times 10^{-5} \ 11; \\ &\alpha(\text{Q}) = 6.44 \times 10^{-6} \ 9 \\ &\delta(\text{E2/M1}) = 0.2 \ +6-2 \ \text{from ce data.} \end{aligned}$
569.4 5	5.1 7	1100.24?		530.93?	$(5/2^+)$	[D,E2]	0.07 6	
577.7 ^b 3	1.9 6	1248.4?		670.76?	(2)(2+)	[D,E2]	0.07 6	
586.8 0 595.3 5	3.0 6 5.1 7	824.85? 595.14?	(3/2 ⁻)	0.0	$(3/2^+)$ $1/2^+$	[D,E2] [E1]	0.076	α (K)=0.00706 <i>10</i> ; α (L)=0.001205 <i>17</i> ; α (M)=0.000285 <i>4</i> α (N)=7.53×10 ⁻⁵ <i>11</i> ; α (O)=1.733×10 ⁻⁵ <i>25</i> ; α (P)=3.14×10 ⁻⁶ <i>5</i> ; α (Q)=2.55×10 ⁻⁷ <i>4</i>
x607.6 5	1.0 1							
$609.3^{o} 5$	2.8 3	670.76?		61.70	$(3/2^+)$	[D,E2]	0.06 5	
$612.5^{\circ}5$	1.0 1	680.77		68.50	$(5/2^+)$	[D,E2]	0.06 5	
014.0° 3 662.0 3	1.5 2 5.2 5	1100.24? 680 77		485.69 18 35	$(3/2^+, 5/2^+)$ $(3/2^-)$	[D,E2] [D,E2]	0.05 4	
666.3 ^b 4	1.7 3	1137.9		471.58	$(5/2^{-})$	[D,E2]	0.05 4	
732.6 5	8.0 24	848.95		115.97	$(3/2^{-})$	[D,E2]	0.038 32	
754.1 5	3.1 5	870.1		115.97	$(3/2^{-})$ $(3/2^{+})$	[D,E2]	0.034 29	
842.0 5	4.5 <i>12</i> 1.8 6	824.85? 847.2?		5.25	$(3/2^+)$ $(1/2^+, 3/2^+, 5/2^+)$	[D,E2] [D,E2]	0.034 29	
^x 844.2 5	1.8 3	0		0.20	(-,- ,0,- ,0,2)	[2,22]		
849.1 5 *857 8 6	1.3 5	848.95		0.0	1/2+			
868.4 ^b 6	6.9 11	1354.2?		485.69	$(3/2^+, 5/2^+)$	[D.E2]	0.024 20	$I_{\rm ec}$: 3.1 in Fig. 5 of 2008Bo29 is incorrect.
871.1 6	6.0 6	1137.9		266.68	(3/2 ⁻)	[D,E2]	0.024 20	-,
912.1 6 ^x 937.7 5 ^x 986.9 4	15.0 26 3.2 9 3.1 9	912.1?		0.0	1/2+	[D,E2]	0.022 18	

From ENSDF

²³¹₈₉Ac₁₄₂-11

 $^{231}_{89}\mathrm{Ac}_{142}$ -11

231 Ra β^- decay (103.9 s) 2008Bo29 (continued)

$\gamma(^{231}Ac)$ (continued)

E_{γ}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Comments
1040.2 5	7.2 7	1114.91?		74.70	(5/2+)	
1046.2 <mark>b</mark> 5	2.7 3	1114.91?		68.50	$(5/2^+)$	
1086.3 <mark>b</mark> 6	2.4 3	1155.21?		68.50	$(5/2^+)$	
1150.1 ^b 4	3.1 4	1155.21?		5.25	$(1/2^+, 3/2^+, 5/2^+)$	
1155.6 ^b 6	4.0 12	1155.21?		0.0	$1/2^{+}$	
1248.3 ^b 5	0.7 2	1248.4?		0.0	$1/2^{+}$	
1354.4 <mark>b</mark> 9	1.0 2	1354.2?		0.0	1/2+	I_{γ} : 4.0 in Fig. 5 of 2008Bo29 is incorrect.

[†] Contribution from Th subtracted.

[‡] From ce data in 2008Bo29. For M1 transitions, small E2 admixtures are not ruled out. E1 or M1 assumed when not listed by 2008Bo29, according to a general statement by the authors. The same multipolarities are recommended in the Adopted dataset.

[#] Deduced by evaluators from experimental conversion data. For dominant M1 transitions, deduced $\delta(E2/M1)$ limits are given in comments.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&] Multiply placed.

^{*a*} Multiply placed with intensity suitably divided.

^b Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

²³¹₈₉Ac₁₄₂

²³¹₈₉Ac₁₄₂

²³¹₈₉Ac₁₄₂

²³¹₈₉Ac₁₄₂