History

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, Jagdish K. Tuli, and Edgardo Browne	NDS 185, 560 (2022)	31-Aug-2022

 $O(\beta^{-})=1947$ 13; S(n)=6147 21; S(p)=6042 17; $O(\alpha)=3655$ 14 2021Wa16 S(2n)=11070 18, S(2p)=14483 14 (2021Wa16).

1973Ch24: ²³¹Ac produced and identified in ²³²Th(γ ,p), ²³²Th(n,pn), followed by chemical separation. Measured half-life of 7.5 min from γ decay curves. Confirmation of this activity was made from an observed activity with T_{1/2}=7.5 min 2, by milking four samples of the daughter nucleus 231 Th every eight minutes and plotting the initial intensities of the 25.7 keV γ ray. Assignment of this activity to ²³¹Ac was supported by its genetic relationship to ²³¹Th.

A T_{1/2}=15 min 1 activity reported by 1960Ta19 from γ rays of 85 keV and 185 keV, and very weak and uncertain γ rays of 280 keV, 390 keV, and 710 keV probably belonged to an impurity such as one of the short-lived tellurium isotopes from disagreement in the half-life value and in the intensity of the 280-keV γ ray, the strongest γ from ²³¹Ac decay, as discussed by 1999Aa03 and 1973Ch24.

Mass measurement: 2012Ch19, 2012Zh46, 2005LiZZ.

Theoretical calculations: consult the NSR database (www.nndc.bnl.gov/nsr/) for five primary references, also listed in this dataset under 'document' records, one for nuclear structure and four for half-lives in radioactive decays. The 'document' records can be accessed through on-line ENSDF database at www.nndc.bnl.gov/ensdf/.

Additional information 1.

²³¹Ac Levels

There is another possible band in ²³¹Ac from ²³²Th(¹³⁶Xe,¹³⁷Csy) (1999Br17) with cascade of 119.3, 178.6, 234.8, 285.8, 330.4, 368.8, 401.2, (428), (448) keV γ rays. Assignment of this band to ²³¹Ac remains uncertain, as it was not reported in ²³²Th(²⁰⁹Bi,²¹⁰Poy) (2002AbZV,2000JaZY).

Cross Reference (XREF) Flags

231 Ra β^-	decay	(103.9	s)
-----------------------	-------	--------	----

23.	
201	$f(f \alpha)$
	111(1,11)

В

- ²³²Th(¹³⁶Xe,¹³⁷Csγ) ²³²Th(²⁰⁹Bi,²¹⁰Poγ) С
- D

E(level) [†]	J ^π @	$T_{1/2}^{a}$	XREF	Comments
0.0 ^b	1/2+	7.5 min <i>1</i>	AB D	$%\beta^-=100$ J ^π : probable configuration= $\pi 1/2[400]$ from (t,α) σ data. Also, analogy to β^- decay of ²²⁷ Fr to ²²⁷ Ra, as the g.s. decay of ²³¹ Ac proceeds through a strong β transition to the 554.5, (1/2) ⁻ level in ²³¹ Th, with log <i>ft</i> =5.5, and in ²²⁷ Fr decay to a 675, 1/2 ⁻ with log <i>ft</i> =5.7. In both cases, this strong β transition is interpreted as $1/2^+$, $\pi 1/2[400]$, $s_{1/2}$ proton orbit to $1/2^-$, $\nu 1/2[501]$, $p_{1/2}$ neutron orbit. T _{1/2} : from 1973Ch24, from exponential decay of the strongest γ rays from the decay of ²³¹ Ac. Other: ≈ 7.5 min (1985Hi02, from γ-decay).
5.25 7 18.35 8	$(1/2^+, 3/2^+, 5/2^+)$ $(3/2^-)$		A A	J^{π} : 232.71 γ , (E2(+M1)) from 238, (3/2 ⁺) level. Tentative configuration= $\pi 1/2[530]$ (2008Bo29).
$37.96^{b} 6$ $38^{\ddagger c}$ 61.70 7 68.502 6	$(3/2)^+$ & $(3/2^-)$ & $(3/2^+)$ $(5/2^+)$		Ab D b A	J ^{π} : 475.3 M1 γ from 1/2 ⁺ ,3/2 ⁺ . Tentative configuration= π 3/2[651] (2008Bo29).
68.50? 6 74.70 ^b 6	$(5/2^+)$ $(5/2^+)$		A A CD	E(level): $0+x$ in ²³² Th(¹³⁶ Xe, ¹³⁷ Cs γ). Tentative configuration= $\pi 1/2[400]$ (2008Bo29).
76 ^{‡d} 5	$(9/2^+)^{\&}$		В	

Adopted Levels, Gammas (continued)

²³¹Ac Levels (continued)

E(level) [†]	J ^{π @}	T _{1/2} <i>a</i>	XREF	Comments
94 ^{‡c} 3	$(7/2^{-})^{\&}$		В	
96.07? 5	(1/2,3/2)		Α	J ^{π} : possible dipole γ to $1/2^+$.
115.97 6	(3/2 ⁻)	14.3 ns 11	Α	Tentative configuration= $\pi 3/2[532]$ (2008Bo29).
135 ^{‡d} 3	$(13/2^+)^{\&}$		В	
160.63 7	(5/2 ⁻)	<0.90 ns	Α	Tentative $5/2^-$ member of configuration= $\pi 3/2[532]$ (2008Bo29).
180.7 ^{#D} 10	(9/2 ⁺) [#]		CD	E(level): $106+x$ in 232 Th(136 Xe, 137 Cs γ); 74.70+x in 232 Th(209 Bi, 210 Po γ).
237.90 ^e 6 245.73? 9	$(3/2^+)^{\&}$ $(1/2^-, 3/2^-, 5/2^-)$	57 ps 11	AB A	XREF: B(235).
257 ^{‡e} 10	$(5/2^+)^{\&}$		В	
266.68 6	(3/2-)	90 ps 20	Α	
305 [‡] 4			В	
344.0 ^{#b} 14	$(13/2^+)^{\#}$		CD	E(level): $269.3+x$ in 232 Th(136 Xe, 137 Cs γ); $236.7+x$ in 232 Th(209 Bi, 210 Po γ).
350 [‡] 4			В	
372.28 7	1/2-,3/2-		Α	J^{π} : 396.9 E1 γ to 1/2 ⁺ g.s.
415.24 7	$(3/2^{-}, 5/2^{-})$		AB	XREF: B(420).
449.48 8	$(3/2^{-}, 5/2^{-})$		A	
456.48? 10	$(3/2^+, 5/2^+)$	-51 - 22	A	$\mathbf{V}\mathbf{D}\mathbf{E}\mathbf{E}$, $\mathbf{D}(440)$
4/1.58 8	(3/2)	<54 ps	AB	AKEF: $B(409)$. Tentative configuration $-\pi 5/2[532]$ (2008Bo29)
473.24? 11	$(1/2^{-}.3/2^{-})$		Α	$\frac{1}{2} \left[\frac{1}{2} \left$
478.17 10	$1/2^+, 3/2^+$		Α	J^{π} : 478.1 M1 γ to 1/2 ⁺ g.s.
485.69 7	$(3/2^+, 5/2^+)$		Α	
498.05 9	$1/2^+, 3/2^+$		Α	J^{π} : 498.2 M1 γ to $1/2^+$ g.s.
512.96 9	$1/2^+, 3/2^+$		A	J^{π} : 513.0 M1 γ to 1/2 ⁺ g.s.
530.9379	$(5/2^{+})$		A	Tentative configuration= $\pi 5/2[642]$ (2008B029).
560.8" 17	(17/2+)"		CD	E(level): $486.1+x$ in 232 Th(130 Xe, 137 Cs γ); $452.2+x$ in 232 Th(209 Bi, 210 Po γ).
595.14? 16	$(3/2^{-})$		A	
647+ 10			В	
670.76? 13			A	
671+ <i>4</i> 680.77 <i>9</i>	$(11/2^{-})$		B A	J^{π} : possible 11/2 ⁻ member of $\pi 9/2[514]$ configuration.
797‡ 4	$(5/2^{-})$		В	J ^{π} : possible 5/2 ⁻ member of π 1/2[541] configuration.
824.85? 20			A	222 126 127
825.6 ^{mb} 20	(21/2 ⁺) [#]		CD	E(level): $750.9+x$ in 252 Th(150 Xe, 157 Cs γ); $715.8+x$ in 232 Th(209 Bi, 210 Po γ).
847.2? 3			A	
848.95 <i>14</i> 870 1 5			A A	
912.1? 6			A	
931.41? 12			A	
1021 [‡] 7			В	
1100.24 20			AB	XREF: A(?)B(1100).
1114.91? 24			Α	
1126 [‡] 6			В	
1132.6 ^{#b} 22	(25/2 ⁺) [#]		CD	E(level): $1057.9+x$ in 232 Th(136 Xe, 137 Cs γ); $1022.2+x$ in 232 Th(209 Bi, 210 Po γ).
1137.9 4			Α	
1155.21? 23			Α	
1248.4? <i>3</i>			Α	

Adopted Levels, Gammas (continued)

²³¹Ac Levels (continued)

E(level) [†]	J ^π @	XREF	Comments
1288 [‡] 5		В	
1354.2? 5		Α	
1476.4 ^{#b} 25	$(29/2^+)^{\#}$	CD	E(level): $1401.7 + x$ in 232 Th(136 Xe, 137 Cs γ); $1364.1 + x$ in 232 Th(209 Bi, 210 Po γ).
1850.4 ^{#b} 26	$(33/2^+)^{\#}$	CD	E(level): $1775.7 + x$ in 232 Th(136 Xe, 137 Cs γ); $1736.8 + x$ in 232 Th(209 Bi, 210 Po γ).
2255.4 ^{#b} 28	$(37/2^+)^{\#}$	CD	E(level): $2180.7 + x$ in 232 Th(136 Xe, 137 Cs γ); $2136.7 + x$ in 232 Th(209 Bi, 210 Po γ).
2681.4 ^{#b} 30	$(41/2^+)^{\#}$	CD	E(level): $2559.1 + x$ in 232 Th(136 Xe, 137 Cs γ); $2559.1 + x$ in 232 Th(209 Bi, 210 Po γ).
3122.0? ^{#b} 32	$(45/2^+)^{\#}$	С	E(level): 2999.7+x in 232 Th(136 Xe, 137 Cs γ).

 † From $^{231}\mathrm{Ra}\,\beta^-$ decay, unless otherwise stated.

[‡] From (t, α).

From 232 Th(136 Xe, 137 Cs γ) and/or 232 Th(209 Bi, 210 Po γ). J^{π} from possible band structure in 232 Th(209 Bi, 210 Po γ) (2002AbZV).

^(a) Based on γ -ray multipolarities (2008Bo29) from ce data, and γ -decay pattern. Configurations for some of the levels are proposed by 2008Bo29.

& From comparison of 232 Th(t, α) cross sections (1977Th04) with calculated values for band members, 'finger-print' method, combined with systematics of level structures in 229 Ac, 233 Pa, 235 Pa, 237 Pa in 1977Th04. Evaluators consider the assignment as tentative, as strong arguments seem lacking.

^{*a*} For excited states, values are from $\beta\gamma\gamma(t)$ fast-timing technique (2008Bo29,2007Bo48).

^b Band(A): $\pi 1/2[400]$.

^c Band(B): π1/2[530].

^d Band(C): π3/2[651].

^{*e*} Band(D): $\pi 3/2[402]$.

$\gamma(^{231}Ac)$

E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^π	Mult. [‡]	δ^{\ddagger}	$\alpha^{\#}$	Comments
18.35	$(3/2^{-})$	18.44 10	100	0.0	1/2+	[E1]		6.29 13	
37.96	$(3/2)^+$	19.64 10	≈100	18.35	$(3/2^{-})$	[E1]		5.29 11	
	.,,,	37.8 4	15 5	0.0	$1/2^{+}$	[M1]		59.1 <i>21</i>	
61.70	$(3/2^+)$	56.50 5	100	5.25	$(1/2^+, 3/2^+, 5/2^+)$	E2(+M1)	>2.0	143 14	
68.50?	$(5/2^+)$	63.23 ^a 5	100	5.25	$(1/2^+, 3/2^+, 5/2^+)$	[M1,E2]		52 40	
74.70	$(5/2^+)$	36.74 5	100	37.96	$(3/2)^+$	[M1]		64.3 9	
96.07?	(1/2, 3/2)	96.01 ^a 6	100	0.0	$1/2^{+}$	[D]		2.0 19	
115.97	$(3/2^{-})$	41.27 5	9.7 19	74.70	$(5/2^+)$	[E1]		1.197 <i>17</i>	$B(E1)(W.u.)=7.5\times10^{-6}+17-15$
		47.45 5	3.8 5	68.50?	$(5/2^+)$	[E1]		0.826 12	$B(E1)(W.u.) = 1.93 \times 10^{-6} + 36 - 31$
		54.29 5	100 11	61.70	$(3/2^+)$	E1		0.577 8	$B(E1)(W.u.)=3.39\times10^{-5} 31$
		77.97 6	37.8 44	37.96	$(3/2)^+$	E1		0.220 3	$B(E1)(W.u.) = 4.3 \times 10^{-6} + 7 - 6$
160.63	$(5/2^{-})$	44.6 1	100	115.97	$(3/2^{-})$	M1		36.3 5	B(M1)(W.u.)>0.0072
180.7	(9/2 ⁺)	106 ^{<i>a</i>}		74.70	(5/2+)				E_{γ} : from ²³² Th(¹³⁶ Xe, ¹³⁷ Cs γ) (1999Br17), also expected from rotational-energy analysis
237.90	$(3/2^{+})$	77.17.7	6.3.13	160.63	$(5/2^{-})$	E1		0.226.3	$B(E1)(W_{III}) = 1.8 \times 10^{-4} + 6^{-5}$
2011/0	(0/=)	121 96 8	11 7 13	115 97	$(3/2^{-})$	IE11		0.302.4	$B(E1)(Wu) = 8.2 \times 10^{-5} + 22 - 19$
		141.88^{a} 10	<7.5	96.07?	(1/2, 3/2)	[D]		3.3.31	
		219.69.15	38.5	18.35	$(3/2^{-})$	IE11		0.074 /	$B(E1)(W_{III}) = 4.6 \times 10^{-5} + 12 - 11$
		232.71 9	100 9	5.25	$(1/2^+, 3/2^+, 5/2^+)$	(E2(+M1))	>4	0.40 4	$B(M1)(W.u.) = 7.3 \times 10^{-4} + 35 - 73;$ B(E2)(Wu) = 66 + 37 - 23
		237.86 15	10.9 13	0.0	$1/2^{+}$	[M1]		1.47 2	B(M1)(W.u.)=0.00127 + 33 - 30
245.73?	$(1/2^{-}, 3/2^{-}, 5/2^{-})$	129.76 7	100	115.97	$(3/2^{-})$	M1+E2		5.8 24	
266.68	$(3/2^{-})$	21.0 ^a 4	< 0.01	245.73?	$(1/2^-, 3/2^-, 5/2^-)$	[M1]		$3.3 \times 10^2 22$	$B(M1)(W.u.)=4\times10^{-4}+8-4$
	., ,	106.48 ^a 9	8.0 13	160.63	(5/2 ⁻)	[M1]		2.86 4	B(M1)(W.u.)=0.0044 +15-10
									E_{γ} : somewhat poor fit, level-energy difference=106.05.
		150.75 10	1.29 16	115.97	$(3/2^{-})$	[M1]		5.30 8	$B(M1)(W.u.)=2.5\times10^{-4}+8-6$
		170.41 ^a 10	2.25 32	96.07?	(1/2,3/2)	[D]		1.9 18	
		192.00 8	24.6 27	74.70	$(5/2^+)$	[E1]		0.1017 14	$B(E1)(W.u.) = 1.9 \times 10^{-5} + 6 - 4$
		198.18 8	100 10	68.50?	$(5/2^+)$	E1		0.0943 13	$B(E1)(W.u.)=7.0\times10^{-5}+22-14$
		205.00 10	117 26	61.70	$(3/2^+)$	E1		0.0871 12	$B(E1)(W.u.) = 7.4 \times 10^{-5} + 23 - 18$
		228.73 10	28.1 27	37.96	$(3/2)^+$	[E1]		0.0673 10	$B(E1)(W.u.) = 1.28 \times 10^{-5} + 41 - 27$
		260.82 10	25.4 24	5.25	$(1/2^+, 3/2^+, 5/2^+)$	[E1]		0.0497 7	$B(E1)(W.u.) = 7.8 \times 10^{-6} + 25 - 16$
									E_{γ} : poor fit, level-energy difference=261.43.
344.0	$(13/2^+)$	163.3		180.7	(9/2+)				E_{γ} : from (¹³⁶ Xe, ¹³⁷ Cs). Other: 162.0 in (²⁰⁹ Bi, ²¹⁰ Po).
372.28	1/2-,3/2-	134.38 ^a 10	2.0 5	237.90	$(3/2^+)$	[E1]		0.239 4	· · · · · ·
		372.27 10	100 10	0.0	1/2+	E1		0.0225 3	
415.24	$(3/2^{-}, 5/2^{-})$	177.39 8	11.5 18	237.90	$(3/2^+)$	[E1]		0.1228 17	
		254.57 10	100 10	160.63	$(5/2^{-})$	M1		1.217 17	

4

					Adopted L	evels, Gamn	nas (con	tinued)	
					<u>γ(</u>	²³¹ Ac) (cont	inued)		
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π	Mult. [‡]	δ^{\ddagger}	α #	Comments
415.24	(3/2 ⁻ ,5/2 ⁻)	299.10 <i>15</i> 396.92 [@] <i>15</i>	40 <i>4</i> 35 11	115.97 18.35	(3/2 ⁻) (3/2 ⁻)	M1 M1		0.780 <i>11</i> 0.360 <i>5</i>	2008Bo29 placed 396.92 γ from the 415 level only in Tables 1 and 2, but in Fig. 1 and Table 4, placement was also shown from 471 level. The latter placement appears incorrect, as implied multipolarity of E1 for this placement is inconsistent with M1 from $\alpha(K)$ exp data in authors' Table 2. However, possibility of a small component of the 396.9 γ ray from the 471.6 level is not precluded. Evaluators assign the intensity given in 2008Bo29 to the placement from 415 level only.
449.48	(3/2 ⁻ ,5/2 ⁻)	211.50 ^{&} 10 288.94 10	43 ^{&} 13 100 13	237.90 160.63	$(3/2^+)$ $(5/2^-)$	[E1] M1		0.0809 <i>11</i> 0.857 <i>12</i>	
456.48?	(3/2 ⁺ ,5/2 ⁺)	295.74 <i>15</i> 381.76 ^{<i>a</i>} <i>15</i> 387.99 ^{<i>a</i>} <i>15</i> 394.90 <i>15</i>	15 4 24 4 35 9 100 10	160.63 74.70 68.50? 61.70	$(5/2^{-})$ $(5/2^{+})$ $(5/2^{+})$ $(3/2^{+})$	[E1] [M1] [M1] M1		0.0370 5 0.400 6 0.383 5 0.365 5	
471.58	(5/2 ⁻)	204.79 <i>10</i> 355.66 <i>20</i> 396.92 [@] <i>a 15</i>	44 <i>15</i> 3.7 <i>7</i>	266.68 115.97 74.70	$(3/2^{-})$ $(3/2^{-})$ $(3/2^{-})$ $(5/2^{+})$	M1 M1		2.23 <i>3</i> 0.485 <i>7</i>	B(M1)(W.u.)>0.0056 B(M1)(W.u.)>8.0×10 ⁻⁵
		403.03 15	27.9 27	68.50?	(5/2 ⁺)	[E1]		0.0190 3	$B(E1)(W.u.) > 3.8 \times 10^{-6}$
473.24?	(1/2 ⁻ ,3/2 ⁻)	409.89 <i>10</i> 357.26 <i>10</i> 473.40 ^{<i>a</i>} <i>30</i>	100 9 100 9 14.5 <i>31</i>	61.70 115.97 0.0	$(3/2^+)$ $(3/2^-)$ $1/2^+$	E1 M1 [E1]		0.0184 <i>3</i> 0.479 <i>7</i> 0.0136 <i>2</i>	$B(E1)(W.u.) > 1.4 \times 10^{-5}$
478.17	1/2+,3/2+	211.50 ^{&} 10 478.15 15	6.8 ^{&} 27 100 <i>14</i>	266.68 0.0	$(3/2^{-})$ $1/2^{+}$	[E1] M1		0.0809 <i>12</i> 0.218 <i>3</i>	
485.69	(3/2 ⁺ ,5/2 ⁺)	70.44 5 113.40 8 247.65 15 325.12 15 369.52 30	6.4 8 8.8 8 100 <i>10</i> 20.0 24 118 21	415.24 372.28 237.90 160.63 115.97	$(3/2^{-},5/2^{-})$ $1/2^{-},3/2^{-}$ $(3/2^{+})$ $(5/2^{-})$ $(3/2^{-})$	[E1] [E1] M1(+E2)	<0.8	0.288 <i>4</i> 0.358 <i>5</i> 0.9 <i>4</i>	
		417.55 ^{<i>a</i>} 10 467.39 15	11.2 <i>16</i> 109 <i>16</i>	68.50? 18.35	$(5/2^+)$ $(3/2^-)$	[M1]		0.314 5	E_{γ} : somewhat poor fit, level-energy difference=417.19.
498.05	1/2+,3/2+	26.40 8 429.62 <i>15</i> 498.20 <i>15</i>	>4.0 48 6 100 9	471.58 68.50? 0.0	$(5/2^{-})$ $(5/2^{+})$ $1/2^{+}$	[E1] [M1] M1		3.90 7 0.290 4 0.195 3	
512.96	1/2+,3/2+	444.32 ^{<i>a</i>} 10 475.29 15 494.57 30	4.9 9 49 5 4.3 9	68.50? 37.96 18.35	$(5/2^+)$ $(3/2)^+$ $(3/2^-)$	[M1] M1		0.265 <i>4</i> 0.221 <i>3</i>	
530.93?	(5/2+)	513.00 <i>15</i> 81.48 9 456.19 <i>15</i>	100 <i>13</i> 6.7 9 74 7	0.0 449.48 74.70	$1/2^+$ (3/2 ⁻ ,5/2 ⁻) (5/2 ⁺)	M1 [E1] M1		0.180 <i>3</i> 0.196 <i>3</i> 0.247 <i>4</i>	

S

					Adopted L	evels, Gar	nmas (conti	nued)	
	γ ⁽²³¹ Ac) (continued)								
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult. [‡]	α #	Comments	
530.93?	(5/2+)	462.38 15	59 5 100 9	68.50? 61.70	$(5/2^+)$ $(3/2^+)$	M1 M1	0.238 3		
560.8 595 14?	$(17/2^+)$ $(3/2^-)$	216.8 434 50 15	100 9	344.0 160.63	$(3/2^+)$ $(13/2^+)$ $(5/2^-)$	M1	0.229 5	E_{γ} : from (¹³⁶ Xe, ¹³⁷ Cs). Other: 215.5 in (²⁰⁹ Bi, ²¹⁰ Po).	
670.76?	(0/2)	595.3 <i>5</i> 425.02 <i>10</i>	36 5 100 22	0.0 245.73?	$(3/2^{+})$ $1/2^{+}$ $(1/2^{-},3/2^{-},5/2^{-})$ $(2/2^{+})$		0.202		
680.77		609.3^{a} 5 195.09 10 442.90 10 612.5^{a} 5 662.0.3	122 <i>13</i> 100 <i>11</i> 53 <i>7</i> 12.3 <i>12</i> 64 6	61.70 485.69 237.90 68.50?	$(3/2^+)$ $(3/2^+, 5/2^+)$ $(3/2^+)$ $(5/2^+)$ $(3/2^-)$				
824.85?		586.8 6 763.1 <i>3</i>	67 <i>13</i> 100 27	237.90 61.70	$(3/2^+)$ $(3/2^+)$ $(3/2^+)$				
825.6	$(21/2^+)$	264.8		560.8	$(17/2^+)$			E_{γ} : from (¹³⁶ Xe, ¹³⁷ Cs). Other: 263.6 in (²⁰⁹ Bi, ²¹⁰ Po).	
847.2?		432.00 ^a 30 842.0 5	200 28 100 <i>33</i>	415.24 5.25	$(3/2^{-}, 5/2^{-})$ $(1/2^{+}, 3/2^{+}, 5/2^{+})$				
848.95		375.72 ^{<i>a</i>} 10 732.6 5	85 <i>11</i> 100 <i>30</i>	473.24? 115.97	$(1/2^{-},3/2^{-})$ $(3/2^{-})$ $1/2^{+}$				
870.1		849.1 5 754 1 5	16.0	0.0	$\frac{1}{2}$				
912.1?		381.16^{a} 30	7.3 7	530.93?	$(5/2^+)$				
,		912.1 6	100 17	0.0	$1/2^+$				
931.41?		445.74 10	100 13	485.69	$(3/2^+, 5/2^+)$				
		481.74 ^a 30	52 11	449.48	$(3/2^{-}, 5/2^{-})$				
1100.24		275.38 10	31 12	824.85?					
		569.4 5	100 14	530.93?	$(5/2^+)$				
1114 019		614.6 ⁴ 3	29 4	485.69	$(3/2^+, 5/2^+)$				
1114.91?		1040.2.5	100 10	/4./0	$(5/2^+)$				
1132.6	$(25/2^{+})$	307.0	30 4	825.6	(3/2) $(21/2^+)$			\mathbf{F} : from $(136 \mathbf{V}_{e}, 137 \mathbf{C}_{e})$ Other: 306 4 in $(209 \mathbf{B}_{e}; 210 \mathbf{P}_{e})$	
1132.0	(23/2)	507.0 666.3 ^a 1	28 5	023.0 471.58	(21/2) $(5/2^{-})$			E_{γ} . Hom (Ac, CS). One: 500.4 m (DI, 10).	
1157.9		87116	100 10	266.68	$(3/2^{-})$				
1155.21?		40.30^{a} 5	18.8	1114.91?	(0/2)	[D]	25 24		
		1086.3 ^{<i>a</i>} 6	60 8	68.50?	$(5/2^+)$				
		1150.1 ^{<i>a</i>} 4	78 10	5.25	$(1/2^+, 3/2^+, 5/2^+)$				
		1155.6 ^a 6	100 30	0.0	$1/2^{+}$				
1248.4?		577.7 <mark>a</mark> 3	100 32	670.76?					
		1248.3 ^{<i>a</i>} 5	37 11	0.0	1/2+				
1354.2?		868.4 ^{<i>u</i>} 6	100 16	485.69	$(3/2^+, 5/2^+)$				
1476 4	(00/2±)	1354.44 9	14 3	0.0	1/2*			$E_{\rm c} = (136 {\rm W}, 137 {\rm G}) + 0.1 = 0.41 {\rm G} + (200 {\rm D}) (210 {\rm D})$	
14/6.4	$(29/2^{+})$	343.8		1132.6	$(25/2^{+})$			E_{γ} : from (150 Xe, 157 Cs). Other: 341.9 in (209 Bi, 210 Po).	
1850.4	$(33/2^{+})$	374		1476.4	(29/2+)			E_{γ} : from (¹⁵⁰ Xe, ¹⁵⁷ Cs). Other: 372.7 in (²⁶⁹ Bi, ²¹⁰ Po).	

6

 $^{231}_{89}\mathrm{Ac}_{142}$ -6

L

From ENSDF

 $^{231}_{89}\mathrm{Ac}_{142}$ -6

$\gamma(^{231}\text{Ac})$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Comments
2255.4 2681.4 3122.0?	$(37/2^+) (41/2^+) (45/2^+)$	405 426 440.6 ^{<i>a</i>}	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	 E_γ: from (¹³⁶Xe,¹³⁷Cs). Other: 399.9 in (²⁰⁹Bi,²¹⁰Po). E_γ: from (¹³⁶Xe,¹³⁷Cs). Other: 422.4 in (²⁰⁹Bi,²¹⁰Po). E_γ: 440.6 from (²⁰⁹Bi,²¹⁰Po) only. As values in (²⁰⁹Bi,²¹⁰Po) (2002AbZV) are consistently lower as compared to those in (¹³⁶Xe,¹³⁷Cs) (1999Br17), the given Eγ may be lower by ≈4 keV.

[†] From ²³¹Ra β⁻ decay.
[‡] From ce data in ²³¹Ra β⁻ decay.
[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Multiply placed.

[&] Multiply placed with intensity suitably divided. ^a Placement of transition in the level scheme is uncertain.

²³¹₈₉Ac₁₄₂

²³¹₈₉Ac₁₄₂

Adopted Levels, Gammas (continued)

Band(D): *π*3/2[402]

(5/2⁺) 257

(3/2+) 237.90