230 Pa ε + β^+ decay 1994Ac02,1972Va24

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. Morse	NDS 197,259 (2024).	26-Sep-2023

Parent: ²³⁰Pa: E=0.0; $J^{\pi}=2^{-}$; $T_{1/2}=17.4 \text{ d} 4$; $Q(\varepsilon)=1311 3$; $\%\varepsilon+\%\beta^{+}$ decay=92.3 7 ²³⁰Pa-Q(ε): From 2021Wa16.

1994Ac02: ²³⁰Pa mass separated sources produced by ²³²Th(p,3n). Measured $E\gamma$, $I\gamma$, conversion electrons. Detectors: Hyper pure germanium detectors for γ rays; magnetic iron-free orange spectrometer. Measured $\gamma\gamma(\theta,H)$ nuclear orientation. 1972Va24: ²³⁰Pa mass separated sources produced by ²³²Th(p,3n). Measured $E\gamma$, $I\gamma$, conversion electrons, $\gamma\gamma$ coin. Detectors:

Ge(Li) and Si(Li) detectors for γ - and x-rays. NaI(Tl) crystal and Ge(Li) for $\gamma\gamma$ coin. Si(Au) detector for conversion electrons.

²³⁰Th Levels

E(level) [†]	\mathbf{J}^{π}	E(level) [†]	\mathbf{J}^{π}	E(level) [†]	\mathbf{J}^{π}	E(level) [†]	J^{π}
0.0	0^{+}	571.755 15	3-	825.664 21	3+	1012.46 3	3-
53.232 12	2+	634.914 <i>18</i>	0^{+}	951.892 <i>12</i>	1-	1052.384 23	3+
174.107 20	4+	677.514 <i>17</i>	2^{+}	971.728 <i>17</i>	2-	1079.218 15	2^{-}
508.150 <i>13</i>	1-	781.376 <i>13</i>	2^{+}	1009.598 14	2+	1127.790 15	3-

[†] Deduced by evaluators from a least-squares fit to γ -ray energies.

ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments
(183.2 32)	1127.790	1.39 6	7.85 4	1.39 6	εK=0.431 12; εL=0.405 8; εM+=0.164 4
(231.8 32)	1079.218	2.85 10	7.874 25	2.84 9	εK=0.556 6; εL=0.320 4; εM+=0.1247 17
(258.6 32)	1052.384	0.088 9	9.53 5	0.088 9	εK=0.595 4; εL=0.292 3; εM+=0.1123 12
(298.5 32)	1012.46	0.66 7	8.83 5	0.66 7	εK=0.6355 25; εL=0.2645 17; εM+=0.0999 8
(301.4 32)	1009.598	2.88 14	8.20 <i>3</i>	2.87 14	εK=0.6378 24; εL=0.2629 17; εM+=0.0992 8
(339.3 32)	971.728	10.2 4	7.791 23	10.2 4	εK=0.6630 17; εL=0.2455 12; εM+=0.0915 6
(359.1 32)	951.892	43.4 19	7.228 23	43.3 18	εK=0.6733 15; εL=0.2383 11; εM+=0.0884 5
(485.3 32)	825.664	0.074 9	10.33 6	0.074 9	εK=0.7140 7; εL=0.2099 5; εM+=0.07603 20
(529.6 32)	781.376	3.56 13	8.736 20	3.55 13	εK=0.7226 6; εL=0.2039 4; εM+=0.07346 16
(739.2 32)	571.755	2.65 16	9.20 <i>3</i>	2.65 16	εK=0.7469 3; εL=0.1869 2; εM+=0.06619 7
(802.9 32)	508.150	1.3 5	9.59 17	1.3 5	εK=0.7514 2; εL=0.1838 2; εM+=0.06486 6
(1257.8 32)	53.232	24 5	8.75 10	24 5	ε K=0.7689; ε L=0.17144 5; ε M+=0.05966 2

[†] Absolute intensity per 100 decays.

$\gamma(^{230}\text{Th})$

Iγ normalization: Decay-scheme normalization as well as β and ε branchings have been deduced by evaluator using relative γ-ray intensities, conversion coefficients, assuming no β^- or ε direct feeding to the g.s. of ²³⁰Th and ²³⁰U, respectively, and $\Sigma(I\gamma$ to g.s.)=100%.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [#]	α b	Comments
53.22 5	42 [@] 4	53.232	2+	0.0 0+	E2	227.5 33	% I γ =0.244 23 α (L)=166.5 25; α (M)=45.6 7; α (N)=12.20 18; α (O)=2.71 4; α (P)=0.447 7; α (Q)=0.001238 18 F. L. From 1972Va24
120.90 <i>5</i>	61.7 6	174.107	4+	53.232 2+	E2	4.94 7	Mult.: From α(L)exp=200, K/L=2.9 (1972Va24). %Iγ=0.359 4 α (K)=0.257 4; α (L)=3.42 5; α (M)=0.940 13; α (N)=0.252 4; α (O)=0.0562 8; α (P)=0.00936 13 α (Q)=5.21×10 ⁻⁵ 7
126.7^{f} calc	$\leq 0.3^{@}$	634.914 677 514	0^+ 2 ⁺	508.150 1 ⁻	[E1]		I _{γ} : From 1972Va24. Other:67 5 (1994Ac02). %I γ =0.001744 13 %I γ =0.001744 13
170.53 <i>5</i>	1.0 [@] 2	951.892	1-	781.376 2+	$E1^a$	0.1377 19	% $I_{\gamma}=0.00174475$ % $I_{\gamma}=0.005872$ $\alpha(K)=0.108375; \alpha(L)=0.0222631; \alpha(M)=0.005378; \alpha(N)=0.00141720; \alpha(O)=0.0003265$
175.84 <i>5</i>	0.9 [@] 2	1127.790	3-	951.892 1-	E2 ^{<i>a</i>}	1.069 <i>15</i>	$\alpha(P)=5.94\times10^{-5} \ 8; \ \alpha(Q)=4.00\times10^{-6} \ 6$ %Iy=0.0052 <i>12</i> $\alpha(K)=0.1962 \ 27; \ \alpha(L)=0.639 \ 9; \ \alpha(M)=0.1747 \ 25; \ \alpha(N)=0.0468 \ 7; \ \alpha(O)=0.01048 \ 15$ (D)=0.001762 25 (Q)=1.722, 10=5 24
183.90 <i>11</i>	0.5 [@] 2	1009.598	2+	825.664 3+	M1+E2 ^{<i>a</i>}	2.1 12	$\alpha(P)=0.001762 23; \ \alpha(Q)=1.723 \times 10^{-5} 24$ %Iy=0.0029 12 $\alpha(K)=1.4 12; \ \alpha(L)=0.513 15; \ \alpha(M)=0.132 12; \ \alpha(N)=0.0353 33;$ $\alpha(O)=0.0081 5$ $\alpha(D)=0.001462 23; \ \alpha(Q)=8 E 5 6$
228.23 5	1.1 [@] 2	1009.598	2+	781.376 2+	E0+M1+E2	1.1 7	$\alpha(F) = 0.001402 23$, $\alpha(Q) = 8.E = 5.6$ %I $\gamma = 0.0064 12$ $\alpha(K) = 0.8 7$; $\alpha(L) = 0.241 31$; $\alpha(M) = 0.061 4$; $\alpha(N) = 0.0164 11$; $\alpha(O) = 0.00378 35$
253.55 2	3.4 2	1079.218	2-	825.664 3+	E1 ^a	0.0544 8	α(P)=0.00069 11; α(Q)=4.2×10-5 34 Mult.: From α(K)exp=77 12/1.1 2=70 17, and α(L)exp=14 2/1.1 2=13 3, deduced by evaluator from data reported in 1994Ac02. ce(L1)/ce(L3)≥35 (1994Ac02). See also 1970Lo02, 1971Ku25. %Iγ=0.0198 12 $α(K)=0.0433 6; α(L)=0.00834 12; α(M)=0.002002 28; α(N)=0.000530 7$ $α(O)=0.0001228 17; α(P)=2.276×10-5 32; α(Q)=1.687×10-6 24$

 \mathbf{b}

					²³⁰ Pa ε + β ⁺	decay	1994Ac02,197	2Va24 (continued)
						γ (²³⁰	Th) (continue	<u>d)</u>
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	δ	$\alpha^{\boldsymbol{b}}$	Comments
274.38 2	12.6 [@] 11	951.892	1-	677.514 2+	E1 ^a		0.0454 6	%Iγ=0.073 6 α (K)=0.0363 5; α (L)=0.00690 10; α (M)=0.001656 23; α (N)=0.000438
294.23 2	9.6 <i>5</i>	971.728	2-	677.514 2+	E1 ^a		0.0388 5	
297.86 2	15 <i>I</i>	1079.218	2-	781.376 2+	E1 ^{<i>a</i>}		0.0378 5	$\alpha(P)=1.609\times10^{-5} 23; \ \alpha(Q)=1.231\times10^{-6} 17$ I_{γ} : Weighted average of 9.3 13 (1972Va24) and 9.6 5 (1994Ac02). $\% I_{\gamma}=0.087 6$ $\alpha(K)=0.0303 4; \ \alpha(L)=0.00569 8; \ \alpha(M)=0.001363 19; \ \alpha(N)=0.000361$ $5; \ \alpha(O)=8.39\times10^{-5} 12$
302.16 4	2.0 [@] 2	1127.790	3-	825.664 3+	E1 ^a		0.0366 5	$\alpha(P)=1.564\times10^{-5} 22; \ \alpha(Q)=1.200\times10^{-6} 17$ %Iy=0.0116 12 $\alpha(K)=0.0293 4; \ \alpha(L)=0.00550 8; \ \alpha(M)=0.001318 18; \ \alpha(N)=0.000349$ 5; $\alpha(Q)=8.11\times10^{-5} 11$
316.99 2	29 2	951.892	1-	634.914 0+	[E1]		0.0329 5	$\begin{aligned} &\alpha(P) = 1.514 \times 10^{-5} \ 21; \ \alpha(Q) = 1.164 \times 10^{-6} \ 16 \\ &\%_{I} \gamma = 0.169 \ 12 \\ &\alpha(K) = 0.0264 \ 4; \ \alpha(L) = 0.00492 \ 7; \ \alpha(M) = 0.001179 \ 17; \ \alpha(N) = 0.000312 \\ &4; \ \alpha(O) = 7.26 \times 10^{-5} \ 10 \\ &\alpha(R) = 1.257 \times 10^{-5} \ 10^{-5} \ 10 \\ &\alpha(R) = 1.257 \times 10^{-5} \ 10$
332.07 5	8.0 2	1009.598	2+	677.514 2+	M1+E2	≤-0.4 ^{&}	0.60 4	$\alpha(\mathbf{F}) = 1.537 \times 10^{-173}, \alpha(\mathbf{Q}) = 1.034 \times 10^{-173}$ %I $\gamma = 0.0465$ 12 $\alpha(\mathbf{K}) = 0.479$ 32; $\alpha(\mathbf{L}) = 0.0925$ 35; $\alpha(\mathbf{M}) = 0.0223$ 8; $\alpha(\mathbf{N}) = 0.00595$ 20; $\alpha(\mathbf{O}) = 0.00141$ 5
346.39 <i>3</i>	2.2 [@] 2	1127.790	3-	781.376 2+	E1 ^a		0.0271 4	$\alpha(P)=0.000272 \ 11; \ \alpha(Q)=2.51\times10^{-5} \ 16$ %Iy=0.0128 \ 12 $\alpha(K)=0.02181 \ 31; \ \alpha(L)=0.00402 \ 6; \ \alpha(M)=0.000961 \ 13; \ \alpha(N)=0.000254$ $4; \ \alpha(O)=5.93\times10^{-5} \ 8$ $\alpha(P)=1.111\times10^{-5} \ 16; \ \alpha(O)=8.78\times10^{-7} \ 12$
374.67 ^d 2	8.4 ^{<i>d</i>} 4	1009.598	2+	634.914 0+	E2 ^a		0.0888 12	$\alpha(r) = 1.111 \times 10^{-1} r$, $\alpha(Q) = 0.70 \times 10^{-1} r$ %Iy=0.0488 24 $\alpha(K) = 0.0470 7$; $\alpha(L) = 0.0309 4$; $\alpha(M) = 0.00818 11$; $\alpha(N) = 0.002188 31$; $\alpha(O) = 0.000497 7$
374.67 ^d	8.4 ^d 4	1052.384	3+	677.514 2+	M1+E2 ^{<i>a</i>}		0.27 18	$\alpha(P)=8.09\times10^{-5} I2; \ \alpha(Q)=2.75\times10^{-5} 4$ %Iy=0.0488 24 $\alpha(K)=0.21 I6; \ \alpha(L)=0.050 I9; \ \alpha(M)=0.012 4; \ \alpha(N)=0.0033 I1; \alpha(O)=7.7\times10^{-4} 27$ $\alpha(P)=1.4\times10^{-4} 6; \ \alpha(Q)=1.1\times10^{-5} 8$ Ey=374.77 (possibly a typographical error) in 1972Va24.

ω

 $^{230}_{90}{
m Th}_{140}$ -3

L

				-	²³⁰ P	a $\varepsilon + \beta^+$ decay	y 1994Ac)2,1972Va24 (continued)
							$\gamma(^{230}\text{Th})$ (con	ntinued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. [#]	δ	$\alpha^{\boldsymbol{b}}$	Comments
380.12 2	57 3	951.892	1-	571.755	3-	E2		0.0854 12	%I γ =0.331 18 α (K)=0.0457 6; α (L)=0.0293 4; α (M)=0.00776 11; α (N)=0.002077 29; α (O)=0.000472 7 α (P)=8.26×10 ⁻⁵ 12; α (Q)=2.67×10 ⁻⁶ 4
397.62 2	324 15	571.755	3-	174.107	4+	E1		0.02019 28	Mult.: From Adopted Gammas. %I γ =1.88 9 α (K)=0.01630 23; α (L)=0.00295 4; α (M)=0.000704 10; α (N)=0.0001866 26 α (N)=4.26 \times 10 ⁻⁵ 6; α (D)=8.20 \times 10 ⁻⁶ 11; α (O)=6.65 \times 10 ⁻⁷ 0
399.95 2	112 7	971.728	2-	571.755	3-	M1+E2	1.4 ^{&} 6	0.18 8	$ \begin{aligned} &\alpha(O) = 4.30 \times 10^{-6} \ b, \ \alpha(P) = 8.20 \times 10^{-7} \ 11, \ \alpha(Q) = 0.03 \times 10^{-6} \ 9 \end{aligned} \\ &\beta(I) = 0.65 \ 4 \\ &\alpha(K) = 0.13 \ 7; \ \alpha(L) = 0.036 \ 9; \ \alpha(M) = 0.0089 \ 20; \ \alpha(N) = 0.0024 \ 5; \\ &\alpha(O) = 0.00056 \ 13 \\ &\alpha(P) = 1.03 \times 10^{-4} \ 27; \ \alpha(Q) = 7.E - 6 \ 4 \end{aligned} $
401.62 10	3.0 [@] 5	1079.218	2-	677.514	2+	E1 ^{<i>a</i>}		0.01977 28	Mult.: From α (K)exp=0.41, K/L=8.5 (1972Va24). %I γ =0.0174 29 α (K)=0.01596 22; α (L)=0.00289 4; α (M)=0.000689 10; α (N)=0.0001825 26 (2) α (L)=0.0001825 26
440.78 10	17 [@] 3	1012.46	3-	571.755	3-	M1+E2 ^{<i>a</i>}		0.18 12	$\begin{aligned} \alpha(O) &= 4.26 \times 10^{-6} \ \delta; \ \alpha(P) &= 8.05 \times 10^{-6} \ 11; \ \alpha(Q) &= 6.52 \times 10^{-6} \ 9 \end{aligned}$ $\begin{aligned} & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $
443.74 2	1.00×10 ³ 5	951.892	1-	508.150	1-	M1+E2	0.55 ^{&} 2	0.236 4	%Iγ=5.81 29 α (K)=0.186 4; α (L)=0.0373 6; α (M)=0.00903 15; α (N)=0.00241 4; α (O)=0.000568 9 α (P)=0.0001091 18; α (Q)=9.72×10 ⁻⁶ 19 Mult.: From α (K)exp=0.22, K/L/M=113/20/8 (1972Va24). δ : δ =1 80 7 is also possible from α (C) TH
450.22	≈2 [@]	1127.790	3-	677.514	2+	E1		0.01560 22	% Iy ≈ 0.01163 $\alpha(K) = 0.01263 \ 18; \ \alpha(L) = 0.002252 \ 32; \ \alpha(M) = 0.000537 \ 8; \ \alpha(N) = 0.0001422 \ 20$ $\alpha(O) = 3.33 \times 10^{-5} \ 5; \ \alpha(P) = 6.29 \times 10^{-6} \ 9; \ \alpha(Q) = 5.21 \times 10^{-7} \ 7$
454.92 2	1164 57	508.150	1-	53.232	2+	E1		0.01528 21	Seen only in a coincident spectrum (1971Ko25). %I γ =6.77 34 α (K)=0.01237 17; α (L)=0.002202 31; α (M)=0.000525 7; α (N)=0.0001391 19
463.59 6	148 10	971.728	2-	508.150	1-	M1+E2	-0.28 ^{&} 3	0.242 5	α (O)=3.25×10 ⁻⁵ 5; α (P)=6.15×10 ⁻⁶ 9; α (Q)=5.10×10 ⁻⁷ 7 Mult.: From α (K)exp=0.013 (1972Va24). %I γ =0.86 6 α (K)=0.194 4; α (L)=0.0368 6; α (M)=0.00884 15;

4

From ENSDF

 $^{230}_{90}\mathrm{Th}_{140}$ -4

L

				2:	³⁰ Pa ε + β ⁺ d	lecay 199	4Ac02,1972Va	a24 (continued)
						γ (²³⁰ Th) (continued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	δ	α b	Comments
			_					α (N)=0.00236 4; α (O)=0.000557 9 α (P)=0.0001079 18; α (Q)=1.008×10 ⁻⁵ 20 δ : δ =-1.23 7 is also possible from $\gamma\gamma(\theta, T, H)$. Mult.: From α (K)exp=0.15 (1972Va24).
503.55 ^e 10	9.5 ^{e@} 15	677.514	2+	174.107 4+	E2 ^a		0.0420 6	%I γ =0.055 9 α (K)=0.0266 4; α (L)=0.01141 16; α (M)=0.00296 4; α (N)=0.000792 11; α (O)=0.0001813 25 α (P)=3.24×10 ⁻⁵ 5; α (Q)=1.463×10 ⁻⁶ 20
503.6 ^e 10	≤3 ^e @	1012.46	3-	508.150 1-	[E2]		0.0420 6	%Iγ=0.01744 <i>13</i> $\alpha(K)=0.0266 4$; $\alpha(L)=0.01141 18$; $\alpha(M)=0.00296 5$; $\alpha(N)=0.000791 12$; $\alpha(O)=0.0001812 28$ $\alpha(P)=3.24\times10^{-5} 5$; $\alpha(Q)=1.463\times10^{-6} 21$ E _γ : 503.55 keV <i>10</i> as measured in 1994Ac02 is inconsistent with final-state energy. Therefore, and in light of the fact that this γ ray is multiply placed, the evaluator has increased the uncertainty to 1 keV.
507.48 ^f 508.15 2	705 <i>34</i>	1079.218 508.150	2 ⁻ 1 ⁻	571.755 3 ⁻ 0.0 0 ⁺	E1		0.01222 17	Possibly masked by a strong unresolved γ ray (1994Ac02). %I γ =4.10 20 α (K)=0.00992 14; α (L)=0.001743 24; α (M)=0.000415 6; α (N)=0.0001099 15 α (O)=2.57×10 ⁻⁵ 4; α (P)=4.88×10 ⁻⁶ 7; α (Q)=4.13×10 ⁻⁷ 6
518.54 2	374 18	571.755	3-	53.232 2+	E1		0.01174 16	Mult.: From α (K)exp=0.0061 (1972Va24). %I γ =2.17 <i>II</i> α (K)=0.00953 <i>I3</i> ; α (L)=0.001671 <i>23</i> ; α (M)=0.000398 <i>6</i> ; α (N)=0.0001054 <i>I5</i>
556.06 2	35 2	1127.790	3-	571.755 3-	M1+E2		0.10 6	$\alpha(O)=2.468 \times 10^{-5} 35; \ \alpha(P)=4.68 \times 10^{-6} 7; \ \alpha(Q)=3.97 \times 10^{-7} 6$ Mult.: From $\alpha(K)\exp=0.0075 \ (1970Lo02).$ $\%I\gamma=0.204 12$ $\alpha(K)=0.07 5; \ \alpha(L)=0.016 8; \ \alpha(M)=0.0039 17; \ \alpha(N)=0.0010 5;$ $\alpha(O)=2.4 \times 10^{-4} 11$ $\alpha(P)=4.7 \times 10^{-5} 23; \ \alpha(Q)=3.9 \times 10^{-6} 27$ Mult : $\alpha(L)\exp=0.018 \ (1971Ku25)$
571.08 2	190 <i>10</i>	1079.218	2-	508.150 1-	M1+E2	0.11 ^{&} 2	0.1457 21	%I γ =1.10 6 α (K)=0.1169 <i>17</i> ; α (L)=0.02174 <i>31</i> ; α (M)=0.00521 <i>7</i> ; α (N)=0.001389 <i>20</i> ; α (O)=0.000329 <i>5</i> α (P)=6.38×10 ⁻⁵ <i>9</i> ; α (Q)=6.05×10 ⁻⁶ <i>9</i>
581.65 10	21 1	634.914	0+	53.232 2+	E2		0.0302 4	Mult.: From α (K)exp=0.018 (1972Va24). %I γ =0.122 6 α (K)=0.02029 28; α (L)=0.00735 10; α (M)=0.001884 26; α (N)=0.000503 7

S

						230 Pa ε + β	+ decay	1994Ac02,19	072Va24 (continued)
							$\gamma(^2$	²³⁰ Th) (continu	ed)
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	δ	$\alpha^{\boldsymbol{b}}$	Comments
607.41 8	9.5 2	781.376	2+	174.107	4+	E2 ^{<i>a</i>}		0.0274 4	$\begin{aligned} &\alpha(\text{O}) = 0.0001158 \ 16; \ \alpha(\text{P}) = 2.094 \times 10^{-5} \ 29; \ \alpha(\text{Q}) = 1.089 \times 10^{-6} \ 15 \\ &\text{Mult.: From } \alpha(\text{K}) \text{exp} = 0.019 \ (1971\text{Ku25}). \\ &\% \text{I}\gamma = 0.0552 \ 12 \\ &\alpha(\text{K}) = 0.01873 \ 26; \ \alpha(\text{L}) = 0.00647 \ 9; \ \alpha(\text{M}) = 0.001654 \ 23; \ \alpha(\text{N}) = 0.000442 \end{aligned}$
619.66 2	31 2	1127.790	3-	508.150	1-	E2		0.0263 4	α(O)=0.0001018 I4; α(P)=1.846×10-5 26; α(Q)=9.98×10-7 I4 %Iγ=0.180 I2 $α(K)=0.01805 25; α(L)=0.00611 9; α(M)=0.001559 22; α(N)=0.000417$ $6; α(O)=9.60×10-5 I3$
624.33 7	9.7 5	677.514	2+	53.232	2+	E0+M1+E2		0.07 5	$\alpha(P)=1.744\times10^{-5} 24; \ \alpha(Q)=9.59\times10^{-7} 13$ %Iy=0.0564 29 $\alpha(K)=0.06 4; \ \alpha(L)=0.012 6; \ \alpha(M)=0.0028 13; \ \alpha(N)=7.5\times10^{-4} 35; \ \alpha(O)=1.8\times10^{-4} 8$
634.9 2 651.61 6	4.1 6	634.914 825.664	0+ 3+	0.0 174.107	0+ 4+	E0 M1+E2 ^{<i>a</i>}		0.06 4	$\begin{aligned} \alpha(F) &= 5.4 \times 10^{-4} 17, \ \alpha(Q) &= 2.9 \times 10^{-4} 19 \\ \text{Mult.: From } \alpha(K) &= p = 4.1, \ K/L = 5.7 \ (1972 \text{Va24}). \\ \text{Only electrons were observed, } I(ce(K)) &= 21, \ Ice = 29 \ 6 \ (1972 \text{Va24}). \\ \% I\gamma &= 0.0238 \ 35 \\ \alpha(K) &= 0.050 \ 33; \ \alpha(L) &= 0.010 \ 5; \ \alpha(M) &= 0.0025 \ 12; \ \alpha(N) &= 6.7 \times 10^{-4} \ 31; \\ \alpha(O) &= 1.6 \times 10^{-4} \ 7 \end{aligned}$
677.53 6	11 <i>I</i>	677.514	2+	0.0	0+	E2 ^{<i>a</i>}		0.02170 30	$\begin{aligned} &\alpha(P)=3.0\times10^{-5} \ 15; \ \alpha(Q)=2.6\times10^{-6} \ 17 \\ &\%I\gamma=0.064 \ 6 \\ &\alpha(K)=0.01533 \ 21; \ \alpha(L)=0.00475 \ 7; \ \alpha(M)=0.001204 \ 17; \ \alpha(N)=0.000322 \\ &5; \ \alpha(O)=7.43\times10^{-5} \ 10 \\ &\alpha(P)=1.359\times10^{-5} \ 19; \ \alpha(Q)=8.03\times10^{-7} \ 11 \end{aligned}$
728.13 2	349 <i>17</i>	781.376	2+	53.232	2+	M1+E2	12 ^{&} 2	0.01908 32	%I γ =0.064 7, using the calculated normalization. %I γ =2.03 10 α (K)=0.01378 24; α (L)=0.00396 6; α (M)=0.000998 15; α (N)=0.000266 4; α (O)=6.17×10 ⁻⁵ 9 α (P)=1.135×10 ⁻⁵ 17; α (Q)=7.14×10 ⁻⁷ 13
772.41 6	15 <i>I</i>	825.664	3+	53.232	2+	M1+E2 ^{<i>a</i>}		0.041 25	Mult.: From α (K)exp=0.019 (1972Va24). %I γ =0.087 6 α (K)=0.033 20; α (L)=0.0066 32; α (M)=0.0016 7; α (N)=4.2×10 ⁻⁴ 20; α (O)=1.0×10 ⁻⁴ 5 α (P)=1.9×10 ⁻⁵ 10; α (O)=1.7×10 ⁻⁶ 11
781.39 2	263 <i>13</i>	781.376	2+	0.0	0+	E2		0.01618 23	Mult.: $\alpha(K) \exp[=0.022 \ (1971Ku25)]$. %I γ =1.53 8 $\alpha(K) = 0.01184 \ 17; \ \alpha(L) = 0.00325 \ 5; \ \alpha(M) = 0.000815 \ 11; \ \alpha(N) = 0.0002174 \ 30$ $\alpha(O) = 5.04 \times 10^{-5} \ 7; \ \alpha(P) = 9.32 \times 10^{-6} \ 13; \ \alpha(Q) = 6.08 \times 10^{-7} \ 9$

6

From ENSDF

 $^{230}_{90}{
m Th}_{140}{
m -6}$

					²³⁰ P	a ε + β^+ deca	ıy 1994 A	Ac02,1972Va24	4 (continued)
							γ ⁽²³⁰ Th) (continued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	δ	$\alpha^{\boldsymbol{b}}$	Comments
835.59 8	10 <i>I</i>	1009.598	2+	174.107	4+	E2 ^a		0.01415 20	%I γ =1.53 <i>12</i> , using the calculated normalization. Mult.: From α (K)exp=0.0089 (1972Va24). %I γ =0.058 6 α (K)=0.01050 <i>15</i> ; α (L)=0.00274 <i>4</i> ; α (M)=0.000683 <i>10</i> ; α (N)=0.0001823 26
838.45 5	6 2	1012.46	3-	174.107	4+	E1 ^a		0.00473 7	$\alpha(N) = 0.0001825 20$ $\alpha(O) = 4.24 \times 10^{-5} 6; \ \alpha(P) = 7.86 \times 10^{-6} 11; \ \alpha(Q) = 5.35 \times 10^{-7} 7$ $\%_{I\gamma} = 0.035 12$ $\alpha(K) = 0.00388 5; \ \alpha(L) = 0.000649 9; \ \alpha(M) = 0.0001534 21;$ $\alpha(N) = 4.07 \times 10^{-5} 6; \ \alpha(O) = 9.57 \times 10^{-6} 13$
878.02 10	1.6 [@] 2	1052.384	3+	174.107	4+	M1+E2 ^{<i>a</i>}		0.030 17	α (P)=1.837×10 ⁻⁶ 26; α (Q)=1.659×10 ⁻⁷ 23 I _{γ} : From 1972Va24. %I γ =0.0093 12 α (K)=0.024 14; α (L)=0.0047 23; α (M)=0.0011 5; α (N)=3.0×10 ⁻⁴
898.66 2	1.00×10 ³ 6	951.892	1-	53.232	2+	E1		0.00418 6	<i>I</i> 4; $\alpha(O) = 7.1 \times 10^{-5} 34$ $\alpha(P) = 1.4 \times 10^{-5} 7$; $\alpha(Q) = 1.2 \times 10^{-6} 7$ % <i>I</i> $\gamma = 5.81 35$ $\alpha(K) = 0.00343 5$; $\alpha(L) = 0.000570 8$; $\alpha(M) = 0.0001347 19$; $\alpha(N) = 3.57 \times 10^{-5} 5$; $\alpha(O) = 8.41 \times 10^{-6} 12$
918.50 2	1.43×10 ³ 7	971.728	2-	53.232	2+	E1		0.00402 6	$\alpha(P)=1.617\times10^{-6} \ 23; \ \alpha(Q)=1.471\times10^{-7} \ 21$ Mult.: From $\alpha(K)exp=0.0028 \ (1972Va24).$ %I $\gamma=8.3 \ 4$ $\alpha(K)=0.00330 \ 5; \ \alpha(L)=0.000548 \ 8; \ \alpha(M)=0.0001294 \ 18;$ $\alpha(N)=3.43\times10^{-5} \ 5; \ \alpha(O)=8.08\times10^{-6} \ 11$
951.88 2	5.1×10 ³ 3	951.892	1-	0.0	0+	E1		0.00377 5	$\alpha(P)=1.553\times10^{-6} \ 22; \ \alpha(Q)=1.417\times10^{-7} \ 20$ Mult.: From $\alpha(K)exp=0.0026 \ (1972Va24).$ %I $\gamma=29.7 \ 18$ $\alpha(K)=0.00310 \ 4; \ \alpha(L)=0.000513 \ 7; \ \alpha(M)=0.0001211 \ 17;$ $\alpha(N)=3.21\times10^{-5} \ 4; \ \alpha(O)=7.57\times10^{-6} \ 11$
953.66	30 7	1127.790	3-	174.107	4+	E1 <i>a</i>		0.00376 <i>5</i>	α (P)=1.456×10 ⁻⁶ 20; α (Q)=1.333×10 ⁻⁷ 19 %I γ =29.6 21, using the calculated normalization. Mult.: From α (K)exp=0.0033, K/L=9.5 (1972Va24). %I γ =0.17 4 α (K)=0.00309 4; α (L)=0.000511 7; α (M)=0.0001207 17; α (N)=3.20×10 ⁻⁵ 4; α (O)=7.54×10 ⁻⁶ 11
956.38 2	270 22	1009.598	2+	53.232	2+	M1+E2	6.1 ^{&} 4	0.01157 <i>19</i>	α (P)=1.451×10 ⁻⁶ 20; α (Q)=1.328×10 ⁻⁷ 19 Not reported in 1972Va24. %I γ =1.57 13 α (K)=0.00883 15; α (L)=0.002063 32; α (M)=0.000509 8;

7

From ENSDF

 $^{230}_{90}\mathrm{Th}_{140}$ -7

L

					²³⁰ Ρa ε	$+\beta^+$ decay	1994Ac02,1972Va24 (continued)				
$\gamma(^{230}\text{Th})$ (continued)											
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	E _f J	\int_{f}^{π} Mult. [#]	$\alpha^{\boldsymbol{b}}$	Comments				
959.28 <i>4</i>	85 11	1012.46	3-	53.232 2	2+ [E1]	0.00372 5	$\alpha(N)=0.0001357\ 2I$ $\alpha(O)=3.17\times10^{-5}\ 5;\ \alpha(P)=5.94\times10^{-6}\ 9;\ \alpha(Q)=4.43\times10^{-7}\ 7$ Mult.: $\alpha(K)\exp=0.0052\ (1971Ku25).$ $\%I\gamma=0.49\ 6$ $\alpha(K)=0.00305\ 4;\ \alpha(L)=0.000506\ 7;\ \alpha(M)=0.0001194\ 17;\ \alpha(N)=3.17\times10^{-5}\ 4;$ $\alpha(O)=7.46\times10^{-6}\ 10$ $\alpha(P)=1\ 435\times10^{-6}\ 20;\ \alpha(Q)=1\ 315\times10^{-7}\ 18$				
999.16 2	2.8 [@] 2	1052.384	3+	53.232 2	2+ [E2]	0.01000 14	$\%$ I γ =0.0163 12				
1009.59 2	184 <i>10</i>	1009.598	2+	0.0 0) ⁺ $E2^{a}$	0.00980 14	$\alpha(K)=0.00764 \ 11; \ \alpha(L)=0.001776 \ 25; \ \alpha(M)=0.000438 \ 6; \ \alpha(N)=0.0001168 \ 16 \\ \alpha(O)=2.73\times10^{-5} \ 4; \ \alpha(P)=5.11\times10^{-6} \ 7; \ \alpha(Q)=3.81\times10^{-7} \ 5 \\ \text{Mult.: Assumed E2. M1 would be a K-forbidden transition.} \\ \%I\gamma=1.07 \ 6 \\ \alpha(K)=0.00750 \ 10; \ \alpha(L)=0.001734 \ 24; \ \alpha(M)=0.000427 \ 6; \ \alpha(N)=0.0001139 \ 16 \\ \alpha(O)=2.66\times10^{-5} \ 4; \ \alpha(P)=4.99\times10^{-6} \ 7; \ \alpha(Q)=3.74\times10^{-7} \ 5 \\ \%IQ=3.74\times10^{-7} \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ $				
1025 96 2	249 11	1079 218	2-	53 232 2)+ F1	0.00330.5	$\%_{1\gamma}=1.07$ 9, using the calculated normalization. Mult.: $\alpha(K)\exp=0.008$ (1972Va24). $\%_{1\gamma}=1.45$ 6				
1023.30 2	279 11	1079.210	2	<i>JJ.232 2</i>		0.00550 5	$\alpha(K) = 0.00272 \ 4; \ \alpha(L) = 0.000448 \ 6; \ \alpha(M) = 0.0001056 \ 15; \ \alpha(N) = 2.80 \times 10^{-5} \ 4; \\ \alpha(O) = 6.60 \times 10^{-6} \ 9 \\ \alpha(P) = 1.272 \times 10^{-6} \ 18; \ \alpha(Q) = 1.173 \times 10^{-7} \ 16 \\ \text{Mult} : \ \text{From } \alpha(K) \exp = 0.0023 \ (19701 \ 002)$				
1074.52 2	130 7	1127.790	3-	53.232 2	ν ⁺ Ε1	0.00305 4	%Iy=0.76 4 $\alpha(K)=0.002506 \ 35; \ \alpha(L)=0.000412 \ 6; \ \alpha(M)=9.71\times10^{-5} \ 14; \ \alpha(N)=2.58\times10^{-5} \ 4; \ \alpha(O)=6.08\times10^{-6} \ 9 \ \alpha(P)=1.171\times10^{-6} \ 16; \ \alpha(Q)=1.084\times10^{-7} \ 15 \ Mult.: From \ \alpha(K)exp=0.0021 \ (1970L002).$				

[†] From 1994Ac02, unless otherwise specified.
[‡] Weighted average of values from 1972Va24 and 1994Ac02.
[#] From conversion electron data reported in 1972Va24, using conversion coefficients normalized to α(L)exp(121γ, E2)=3.4 (theory), unless otherwise specified.

 ∞

^a From 2094Ac02. ^b From $\gamma\gamma(\theta, H)$ in 1994Ac02. ^a From conversion electron data (1994Ac02).

^b Additional information 1.
 ^c For absolute intensity per 100 decays, multiply by 0.0058.
 ^d Multiply placed with undivided intensity.

^e Multiply placed with intensity suitably divided.

^f Placement of transition in the level scheme is uncertain.