		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. Morse	NDS 197,259 (2024).	26-Sep-2023

Parent: ²³⁰Ac: E=0.0; $J^{\pi}=(1^+)$; $T_{1/2}=122$ s 3; $Q(\beta^-)=2976$ 16; $\%\beta^-$ decay=100 ²³⁰Ac- $Q(\beta^-)$: From 2021Wa16.

The decay scheme is presented as proposed by 1980Gi04. Levels below 1297 keV and their decays were taken from a previously known partial decay scheme (1977El03). Levels above 1297 keV are from γ -ray energy fits in 1980Gi04. A tentative level at 1625 keV proposed by 1980Gi04, deexcited by 1625.1 γ , is not shown here.

²³⁰Th Levels

E(level) [‡]	$J^{\pi \dagger}$	T _{1/2}	E(level) [‡]	$\mathrm{J}^{\pi \dagger}$
0.0	0^{+}	7.538×10 ⁴ y <i>30</i>	1770.76 11	$(1,2^{+})$
53.25 4	2+		1775.24 7	$(1,2^+)$
174.12 7	4+		1789.4 5	$1^{(-)}, 2^+$
508.18 5	1-		1810.76 6	$(1,2^+)$
571.80 8	3-		1839.61 20	$1^{(-)}, 2^+$
634.95 10	0^{+}		1849.65 10	(2^{+})
677.64 7	2+		1858.3 5	(3-)
781.39 7	2^{+}		1902.70 9	$(1,2^+)$
825.79 8	3+		1949.89 7	$(1,2^+)$
951.99 <i>5</i>	1-		1967.03 10	$(1,2^{+})$
971.74 9	2-		1973.58 9	$(1^+, 2^+)$
1009.74 6	2^{+}		2000.93 8	$(1,2^{+})$
1012.05 14	3-		2010.15 9	$(1,2^{+})$
1079.46 8	$(2)^{-}$		2024.73 13	$(1^+, 2^+)$
1297.17 8	0^{+}		2078.53? 11	
1375.32 6	$(1,2^+)$		2122.79 9	$(1,2^{+})$
1400.92 5	(2^{+})		2133.22? 11	
1485.66 9	(4^{+})		2151.84 10	$(1,2^{+})$
1573.51 20	$1^{(-)}, 2^+$		2282.99 17	$1,2^{+}$
1589.9 <i>3</i>	0^{+}		2298.6 <i>3</i>	$(1,2^{+})$
1638.57 10	(0^{+})		2314.34? 15	$(1,2^{+})$
1695.71 9 1744.93? 9	$1^{(-)}, 2^+$ (0 ⁺)		2368.95? 17	(0 ⁺)

[†] From Adopted Levels.

[‡] From a least-squares fit to E_{γ} .

 β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft		Comments
(607 [#] 16)	2368.95?	0.18 6	6.38 15	av Eβ=182.6 55	
(662 [#] 16)	2314.34?	0.20 5	6.46 12	av Eβ=201.3 56	
(677 16)	2298.6	0.09 3	6.84 15	av $E\beta = 206.8 56$	
(693 16)	2282.99	0.36 7	6.27 10	av $E\beta = 212.256$	
(824 16)	2151.84	0.71 14	6.23 10	av $E\beta = 258.658$	
(843 [#] 16) (853 16)	2133.22? 2122.79	0.39 8 0.97 <i>17</i>	6.53 <i>10</i> 6.15 9	av $E\beta = 265.3 58$ av $E\beta = 269.1 58$	
(898 [#] 16) (951 16) (966 16) (975 16)	2078.53? 2024.73 2010.15 2000.93	0.36 8 0.39 8 0.51 <i>12</i> 0.46 <i>10</i>	6.66 <i>10</i> 6.71 <i>10</i> 6.62 <i>11</i> 6.68 <i>10</i>	av $E\beta$ =285.2 59 av $E\beta$ =304.9 59 av $E\beta$ =310.3 59 av $E\beta$ =313.7 60	

Continued on next page (footnotes at end of table)

230 Ac β^- decay 1980Gi04 (continued)

β^{-} radiations (continued)

E(decay)	E(level)	$I\beta^{-\ddagger\ddagger}$	Log <i>ft</i>	Comments
(1002 16)	1973.58	0.87 15	6.44 8	av $E\beta = 323.8 \ 60$
(1009 16)	1967.03	0.65 15	6.58 11	av E β =326.2 60
(1026 16)	1949.89	1.8 4	6.16 10	av E β =332.6 60
(1073 16)	1902.70	0.92 20	6.52 10	av E β =350.3 61
(1118 16)	1858.3	0.050 21	7.85 19	av E β =367.0 61
(1126 16)	1849.65	0.40 7	6.96 8	av $E\beta = 370.3 \ 61$
(1136 16)	1839.61	0.09 3	7.62 15	av E β =374.1 61
(1165 16)	1810.76	1.6 <i>3</i>	6.41 9	av $E\beta = 385.1 \ 61$
(1187 16)	1789.4	0.025 10	8.24 18	av $E\beta = 393.2 \ 62$
(1201 16)	1775.24	2.2 4	6.32 9	av $E\beta = 398.6\ 62$
(1205 16)	1770.76	0.75 17	6.79 11	av E β =400.3 62
(1231 [#] 16)	1744.93?	0.58 17	6.93 <i>13</i>	av E β =410.2 62
(1280 16)	1695.71	0.44 8	7.11 9	av E β =429.2 62
(1337 16)	1638.57	0.41 8	7.21 9	av $E\beta = 451.3 \ 63$
(1386 16)	1589.9	0.07 3	8.04 19	av $E\beta = 470.3 \ 63$
(1403 16)	1573.51	0.19 5	7.62 12	av E β =476.7 63
(1490 16)	1485.66	0.31 8	7.50 12	av E β =511.2 64
(1575 16)	1400.92	3.5 5	6.54 7	av E β =544.7 64
(1601 16)	1375.32	2.5 4	6.71 8	av E β =554.9 64
(1679 16)	1297.17	4.1 9	6.57 10	av E β =586.0 64
(1897 [#] 16)	1079.46	≈0		av E β =673.8 65
(1964 16)	1012.05	0.30 6	8.98 ¹ ^u 9	av E β =670.2 62
(1966 16)	1009.74	0.18 18	8.2 5	av E β =702.0 66
(2004 [#] 16)	971.74	≈ 0		av E β =717.5 66
(2024 16)	951.99	1.11 24	7.44 10	av E β =725.6 66
(2195 16)	781.39	0.76 18	7.74 11	av E β =795.4 66
(2298 16)	677.64	0.16 11	8.5 <i>3</i>	av E β =838.1 66
(2341 16)	634.95	0.54 15	7.99 <i>13</i>	av E β =855.7 66
(2404 16)	571.80	0.54 17	9.22 ¹ <i>u</i> 14	av Eβ=843.8 64
(2468 16)	508.18	10.2 14	6.81 7	av E β =908.2 67
(2923 16)	53.25	20 16	6.8 4	av E β =1097.6 67
(2976 16)	0.0	40 16	6.53 18	av Eβ=1119.9 67

 $^{\dagger}\beta$ intensities to all excited levels, have been deduced by the evaluator from intensity balance at each level. See comment on ^{*} Absolute intensity per 100 decays. [#] Existence of this branch is questionable.

 γ (²³⁰Th)

Iy normalization: Normalization factor of 0.083 21 to convert relative intensities to absolute Iy's per 100 β^- decays, obtained by the evaluator, by requiring the sum of all transitions (γ rays and β particles) that populate the g.s. to be 100%. Since β intensities were not measured, the β branch to the g.s. was estimated based on the β branch to the 2⁺ level and (ft to 0⁺)/(ft to 2⁺)=0.5 (Theory, Alaga Rule). No contribution to the uncertainties from this procedure, nor from the unplaced γ rays in the decay scheme have been included in the normalization factor. The sum of unplaced γ -ray intensities is $\approx 3.2\%$.

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger b}$	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	α^{a}	$I_{(\gamma+ce)}^{b}$	Comments
53.2 1	2.4 6	53.25	2+	0.0 0+	E2	228 4		α (L)=166.8 28; α (M)=45.7 8; α (N)=12.22 20; α (O)=2.72 5; α (P)=0.448 7; α (O)=0.001240 20
120.8 <i>1</i>	4.0 4	174.12	4+	53.25 2+	E2	4.96 7		$\alpha(K)=0.257 \ 4; \ \alpha(L)=3.44 \ 5; \ \alpha(M)=0.944 \ 14; \ \alpha(N)=0.253 \ 4; \\ \alpha(O)=0.0564 \ 8; \ \alpha(P)=0.00940 \ 14 \\ \alpha(Q)=5.22\times10^{-5} \ 7$
(146.7)		781.39	2+	634.95 0+				E_{γ} : from Coulomb excitation. This γ was not observed in ²³⁰ Ac β^- decay.
								The ratio of $I\gamma(146.7\gamma)/I\gamma(728.0\gamma)=0.245$ 12, measured in Coulomb excitation yields $I\gamma(146.7\gamma)=1.4$ 6. See "Coulomb excitation" for a comment for its reduced transition rate, if its relative intensity from the level were correct. See also ²³⁰ Pa ε decay.
(170.2 ^(a))		951.99	1-	781.39 2+				
(183.6 [@])	0.011 4	1009.74	2^{+}	825.79 3+				I_{γ} : Deduced by evaluators from ²³⁰ Pa ε decay.
(228.0 [@])	0.27 10	1009.74	2+	781.39 2+	E0+E2+M1	1.1 7	1.4 6	α (K)=0.8 7; α (L)=0.242 31; α (M)=0.061 4; α (N)=0.0164 11; α (O)=0.00380 35
								$\alpha(P)=0.00069\ IT;\ \alpha(Q)=4.2\times10^{-5}\ 34$ Total Ice=1.4 6 from Ice(228.0 γ)/I γ (956.5 γ)=77 23/290 60, as observed in ²³⁰ Pa ε decay.
(253.6 [@] 3)	0.030 ^{&} 12	1079.46	(2)-	825.79 3+	[E1]	0.0543 8		α (K)=0.0433 6; α (L)=0.00833 12; α (M)=0.002001 29; α (N)=0.000529 8
Ø	P _							$\alpha(O)=0.0001227 \ 18; \ \alpha(P)=2.275\times10^{-3} \ 32; \ \alpha(Q)=1.686\times10^{-6} \ 24$
(274.25 ^w)	0.040 [°] 14	951.99	1-	677.64 2+	[E1]	0.0455 6		$\alpha(K)=0.0363 5; \alpha(L)=0.00691 10; \alpha(M)=0.001658 23; \alpha(N)=0.000439 6$
								α (O)=0.0001018 14; α (P)=1.894×10 ⁻⁵ 27; α (Q)=1.428×10 ⁻⁶ 20
(294.2 [@])	0.016 8	971.74	2-	677.64 2+	[E1]	0.0388 5		$\alpha(K)=0.0311 4; \alpha(L)=0.00586 8; \alpha(M)=0.001404 20; \alpha(N)=0.000371 5; \alpha(O)=8.63 \times 10^{-5} 12$
$(200, 0^{\textcircled{0}})$	$\rho \rho c \delta \rho$	1070 46	$\langle 0 \rangle =$	701 20 2+	0211	0.0277.5		$\alpha(P)=1.609\times10^{\circ}$ 23; $\alpha(Q)=1.231\times10^{\circ}$ 1/
(298.0 3)	0.06~ 3	10/9.46	(2)	/81.39 21	[E1]	0.0377 3		$\alpha(\mathbf{N})=0.001362$ 4; $\alpha(\mathbf{L})=0.00568$ 8; $\alpha(\mathbf{M})=0.001362$ 19; $\alpha(\mathbf{N})=0.000360$ 5; $\alpha(\mathbf{O})=8.38\times10^{-5}$ 12
								$\alpha(P)=1.563\times10^{-5}\ 22;\ \alpha(Q)=1.199\times10^{-6}\ 17$

ω

						230 Ac β^- deca	y 198	0Gi04 (contin	ued)
						$\gamma(22)$	³⁰ Th) (cc	ontinued)	
${\rm E}_{\gamma}^{\dagger}$	I_{γ} [‡] <i>b</i>	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [#]	δ	α^{a}	Comments
(316.8 [@])	0.066 ^{&} 17	951.99	1-	634.95	0+	[E1]		0.0329 5	$\alpha(K)=0.0264 \ 4; \ \alpha(L)=0.00493 \ 7; \ \alpha(M)=0.001180 \ 17; \ \alpha(N)=0.000312 \ 4; \ \alpha(O)=7.27\times10^{-5} \ 10 \ \alpha(P)=1.359\times10^{-5} \ 19; \ \alpha(Q)=1.055\times10^{-6} \ 15$
(332.0 [@])	0.18 ^{&} 7	1009.74	2+	677.64	2+	[E2(+M1)]		0.38 26	$\alpha(K)=0.29\ 23;\ \alpha(L)=0.072\ 24;\ \alpha(M)=0.018\ 5;\ \alpha(N)=0.0048\ 14;\ \alpha(O)=0.00111\ 34$ $\alpha(P)=2.1\times10^{-4}\ 7;\ \alpha(Q)=1.5\times10^{-5}\ 12$ $I\gamma(332.0\gamma)/I\gamma(375.2\gamma)=1.6\ 10$ measured here is consistent with the ratio of 1.43, expected from Alaga rule, if the 332.0 γ is an E2 transition. An admixture of M1 which is K-forbidden is not ruled out.
363.9 <i>3</i>	0.5 2	1849.65	(2^{+})	1485.66	(4^{+})			0.28 25	
(375.2 [@])	0.11 ^{&} 5	1009.74	2+	634.95	0+	(E2)		0.0885 12	α (K)=0.0469 7; α (L)=0.0307 4; α (M)=0.00813 11; α (N)=0.002177 30; α (O)=0.000494 7 α (P)=8.64×10 ⁻⁵ 12; α (Q)=2.74×10 ⁻⁶ 4
(380.15 [@])	0.12 ^{&} 3	951.99	1-	571.80	3-	E2		0.0854 12	$\alpha(\mathbf{K})=0.0457\ 6;\ \alpha(\mathbf{L})=0.0293\ 4;\ \alpha(\mathbf{M})=0.00776\ 11;\ \alpha(\mathbf{N})=0.002076\ 29;\ \alpha(\mathbf{O})=0.000472\ 7$ $\alpha(\mathbf{P})=8\ 25\times10^{-5}\ 12;\ \alpha(\mathbf{O})=2\ 67\times10^{-6}\ 4$
388.3 1	1.2 /	2133.22?		1744.93?	(0^{+})			0.23 21	$u(1) = 0.25 \times 10^{-12}, u(Q) = 2.07 \times 10^{-4}$
397.7 1	5.0 5	571.80	3-	174.12	4 ⁺	E1		0.02019 28	$\alpha(K)=0.01629\ 23;\ \alpha(L)=0.00295\ 4;\ \alpha(M)=0.000704\ 10;\ \alpha(N)=0.0001865\ 26$
(399.95 [@])	0.27 ^{&} 3	971.74	2-	571.80	3-	M1+E2	1.4 6	0.18 8	$\alpha(O) = 4.35 \times 10^{-5} 6; \ \alpha(P) = 8.20 \times 10^{-5} 11; \ \alpha(Q) = 6.65 \times 10^{-5} 9$ $\alpha(K) = 0.13 7; \ \alpha(L) = 0.036 9; \ \alpha(M) = 0.0089 20; \ \alpha(N) = 0.0024 5;$ $\alpha(O) = 0.00056 13$
									$\alpha(P) = 1.03 \times 10^{-4} 27; \alpha(Q) = 7.E - 6.4$
(401.3 [@] 5)	0.034 ^{&} 8	1079.46	(2)-	677.64	2+	[E1]		0.01981 28	$\alpha(K)=0.01599\ 23;\ \alpha(L)=0.00289\ 4;\ \alpha(M)=0.000690\ 10;\ \alpha(N)=0.0001828\ 26$
									$\alpha(O)=4.27 \times 10^{-5} 6$; $\alpha(P)=8.04 \times 10^{-6} 11$; $\alpha(Q)=6.53 \times 10^{-7} 9$ The 401-keV γ ray from the $J^{\pi}=2^{-}$, K=2 state to the 2 ⁺ , 0 state is a K-forbidden E1 transition.
423.2 1	1.1 2	1375.32	$(1,2^+)$	951.99	1-			0.18 17	
(440.8 [@])	0.58 ^{&} 24	1012.05	3-	571.80	3-	M1		0.295 4	α (K)=0.2364 33; α (L)=0.0441 6; α (M)=0.01059 15; α (N)=0.00282 4; α (O)=0.000668 9
443.9 1	2.2 4	951.99	1-	508.18	1-	M1+E2	0.6 6	0.23 8	$\alpha(P)=0.000129778; \alpha(Q)=1.231\times10^{-9}177$ $\alpha(K)=0.18 6; \alpha(L)=0.036 9; \alpha(M)=0.0088 19; \alpha(N)=0.0024 5; \alpha(Q)=0.00055 12$
448.9 <i>1</i>	1.5 3	1400.92	(2 ⁺)	951.99	1-	[E1]		0.01570 22	$\begin{aligned} &\alpha(P) = 0.000106\ 26;\ \alpha(Q) = 9.4 \times 10^{-6}\ 33 \\ &\alpha(K) = 0.01271\ 18;\ \alpha(L) = 0.002266\ 32;\ \alpha(M) = 0.000540\ 8; \\ &\alpha(N) = 0.0001431\ 20 \\ &\alpha(O) = 3.35 \times 10^{-5}\ 5;\ \alpha(P) = 6.33 \times 10^{-6}\ 9;\ \alpha(Q) = 5.24 \times 10^{-7}\ 7 \end{aligned}$

4

From ENSDF

 $^{230}_{90}\mathrm{Th}_{140}$ -4

					23	0 Ac β^{-} decay	y 1980	Gi04 (continue	<u>d)</u>
						$\gamma(^{23}$	⁰ Th) (cont	inued)	
E_{γ}^{\dagger}	Ι _γ ‡ b	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. [#]	δ	α^{a}	Comments
454.9 1	100	508.18	1-	53.25 2	+	E1		0.01528 21	$\alpha(K)=0.01237 \ 17; \ \alpha(L)=0.002203 \ 31; \ \alpha(M)=0.000525 \ 7; \ \alpha(N)=0.0001391 \ 19$
(463.60 [@])	0.35 ^{&} 5	971.74	2-	508.18 1	_	M1+E2	-0.28 3	0.242 5	$\alpha(O)=3.25\times10^{-5} 5; \ \alpha(P)=6.15\times10^{-6} 9; \ \alpha(Q)=5.10\times10^{-7} 7$ $\alpha(K)=0.194 4; \ \alpha(L)=0.0368 6; \ \alpha(M)=0.00884 15;$ $\alpha(N)=0.00236 4; \ \alpha(O)=0.000557 9$
503.5 ^c 2	1.7 4	677.64	2+	174.12 4	+	[E2]		0.0420 6	$\begin{aligned} &\alpha(P)=0.0001079 \ 18; \ \alpha(Q)=1.008\times 10^{-5} \ 20 \\ &\alpha(K)=0.0266 \ 4; \ \alpha(L)=0.01142 \ 16; \ \alpha(M)=0.00296 \ 4; \\ &\alpha(N)=0.000792 \ 11; \ \alpha(O)=0.0001813 \ 25 \\ &\alpha(P)=3.24\times 10^{-5} \ 5; \ \alpha(Q)=1.463\times 10^{-6} \ 21 \\ &I_{\gamma}: \ from \ I_{\gamma}(503.5\gamma)/I_{\gamma}(677.6\gamma)=0.79 \ 17, \ measured \ in \ ^{230}Th \end{aligned}$
503.5 ^c 2	0.37 12	1012.05	3-	508.18 1	-				Coulomb excitation. $1\gamma=2.14$ was measured for the doublet. I_{γ} : from $I_{\gamma}(503.5\gamma)/I_{\gamma}(959.1\gamma)=0.165$, as measured in 230 Pa ε decay.
503.5 ^{cd} 2		2314.34?	$(1,2^+)$	1810.76 (1	1,2+)				1 a 0 coody.
(508 [@] 1)	0.30 ^{&} 15	1079.46	(2)-	571.80 3	_	[M1,E2]		0.12 8	$\alpha(K)=0.097; \alpha(L)=0.0219; \alpha(M)=0.005022; \alpha(N)=0.00136; \alpha(O)=3.2\times10^{-4}14$ $\alpha(P)=6.0\times10^{-5}28; \alpha(Q)=4.9\times10^{-6}35$ The 508-keV γ ray from the $J^{\pi}=2^{-}$ state of K=2 band to the $J^{\pi}=3^{-}$ state of K=1 band is assumed to be either M1 or E2, or M1+F2. See 230 Pa s decay for a comment
508.2 1	62.8 20	508.18	1-	0.0 0	+	E1		0.01222 17	$\alpha(K)=0.00992 \ 14; \ \alpha(L)=0.001743 \ 24; \ \alpha(M)=0.000415 \ 6; \ \alpha(N)=0.0001099 \ 15$
518.5 <i>I</i>	5.1 5	571.80	3-	53.25 2	+	E1		0.01174 16	$\begin{aligned} \alpha(\text{O}) = 2.57 \times 10^{-5} \ 4; \ \alpha(\text{P}) = 4.88 \times 10^{-6} \ 7; \ \alpha(\text{Q}) = 4.13 \times 10^{-7} \ 6\\ \alpha(\text{K}) = 0.00953 \ 13; \ \alpha(\text{L}) = 0.001672 \ 23; \ \alpha(\text{M}) = 0.000398 \ 6; \\ \alpha(\text{N}) = 0.0001054 \ 15 \end{aligned}$
571.1 2	1.3 3	1079.46	(2)-	508.18 1	_	M1+E2	0.11 2	0.1457 21	$ \begin{array}{l} \alpha(\mathrm{O}) = 2.469 \times 10^{-5} \ 35; \ \alpha(\mathrm{P}) = 4.69 \times 10^{-6} \ 7; \ \alpha(\mathrm{Q}) = 3.97 \times 10^{-7} \ 6 \\ \alpha(\mathrm{K}) = 0.1169 \ 17; \ \alpha(\mathrm{L}) = 0.02173 \ 31; \ \alpha(\mathrm{M}) = 0.00521 \ 7; \\ \alpha(\mathrm{N}) = 0.001389 \ 20; \ \alpha(\mathrm{O}) = 0.000329 \ 5 \end{array} $
581.7 <i>1</i>	6.5 5	634.95	0^+	53.25 2	+	E2		0.0302 4	$ \begin{aligned} &\alpha(P) = 6.38 \times 10^{-5} \ 9; \ \alpha(Q) = 6.05 \times 10^{-6} \ 9 \\ &\alpha(K) = 0.02029 \ 28; \ \alpha(L) = 0.00734 \ 10; \ \alpha(M) = 0.001884 \ 26; \\ &\alpha(N) = 0.000503 \ 7 \end{aligned} $
^x 600.7 2 (607.5 [@])	1.0 <i>3</i> 0.12 ^{&} 7	781.39	2+	174.12 4	+	[E2]		0.0274 4	$\alpha(O)=0.0001158 \ 16; \ \alpha(P)=2.093\times10^{-5} \ 29; \ \alpha(Q)=1.089\times10^{-6} \ 15$ $\alpha(K)=0.01872 \ 26; \ \alpha(L)=0.00647 \ 9; \ \alpha(M)=0.001653 \ 23; \ \alpha(N)=0.000442 \ 6 \ \alpha(O)=0.0001017 \ 14; \ \alpha(P)=1.846\times10^{-5} \ 26; \ \alpha(Q)=9.97\times10^{-7} \ 14$

 $^{230}_{90}$ Th $_{140}$ -5

						$\frac{\gamma}{\gamma}$	(^{230}Th) (contin	ued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger b}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α^{a}	$I_{(\gamma+ce)}^{b}$	Comments
624.4 1	1.8 2	677.64	2+	53.25	2+	E0+E2+M1	0.07 5		$\alpha(P)=1.846\times10^{-5}\ 26;\ \alpha(Q)=9.97\times10^{-7}\ 14$ $\alpha(K)=0.06\ 4;\ \alpha(L)=0.012\ 6;\ \alpha(M)=0.0028\ 13;\ \alpha(N)=7.5\times10^{-4}$ $35;\ \alpha(O)=1.8\times10^{-4}\ 8$ $\alpha(P)=3.4\times10^{-5}\ 17;\ \alpha(Q)=2.9\times10^{-6}\ 19$ $\alpha:\ deduced\ in\ ^{230}Pa\ \varepsilon\ decay.$
628.8 1	2.9 <i>3</i>	1638.57	(0^{+})	1009.74	2^{+}				,
(634.9 [@])		634.95	0^{+}	0.0	0+	E0		7.8 20	Total Ice=7.8 20 from Ice(634.9 γ)/I γ (581.7 γ)=29 6/24 3, as observed in ²³⁰ Pa ε decay.
x635.6 3 (651.8 [@])	1.0 <i>4</i> 0.48 ^{&} 20	825.79	3+	174.12	4+	[E2]	0.02355 <i>33</i>		$\begin{aligned} &\alpha(\mathbf{K}) = 0.01645 \ 23; \ \alpha(\mathbf{L}) = 0.00529 \ 7; \ \alpha(\mathbf{M}) = 0.001345 \ 19; \\ &\alpha(\mathbf{N}) = 0.000359 \ 5; \ \alpha(\mathbf{O}) = 8.29 \times 10^{-5} \ 12 \\ &\alpha(\mathbf{P}) = 1.513 \times 10^{-5} \ 21; \ \alpha(\mathbf{Q}) = 8.67 \times 10^{-7} \ 12 \end{aligned}$
^x 671.4 2 677.6 <i>1</i>	2.2 <i>4</i> 2.2 <i>2</i>	677.64	2+	0.0	0+	[E2]	0.02169 <i>30</i>		α (K)=0.01533 21; α (L)=0.00475 7; α (M)=0.001204 17; α (N)=0.000322 5; α (O)=7.43×10 ⁻⁵ 10
728.0 1	5.7 6	781.39	2+	53.25	2+	E2	0.01869 26		$\alpha(P)=1.359\times10^{-5} \ I9; \ \alpha(Q)=8.03\times10^{-7} \ I1$ $\alpha(K)=0.01345 \ I9; \ \alpha(L)=0.00391 \ 5; \ \alpha(M)=0.000986 \ I4;$ $\alpha(N)=0.000263 \ 4; \ \alpha(O)=6.09\times10^{-5} \ 9$ $\alpha(P)=1.120\times10^{-5} \ I6; \ \alpha(O)=6.97\times10^{-7} \ I0$
735.1 2	1.2 3	1744.93?	(0^+)	1009.74	2+				$u(1) = 1.120 \times 10^{-10}$, $u(Q) = 0.97 \times 10^{-10}$
750.7 <i>3</i>	1.8 <i>3</i>	2151.84	$(1,2^+)$	1400.92	(2^{+})				
772.6 1	2.9 5	825.79	3+	53.25	2+	E2	0.01656 23		$\alpha(K)=0.01209 \ 17; \ \alpha(L)=0.00335 \ 5; \ \alpha(M)=0.000839 \ 12; \ \alpha(N)=0.0002240 \ 31$
781.5 <i>1</i>	4.6 5	781.39	2+	0.0	0+	E2	0.01618 23		$ \begin{array}{l} \alpha(\text{O}) = 5.20 \times 10^{-5} \ 7; \ \alpha(\text{P}) = 9.59 \times 10^{-6} \ 13; \ \alpha(\text{Q}) = 6.21 \times 10^{-7} \ 9 \\ \alpha(\text{K}) = 0.01184 \ 17; \ \alpha(\text{L}) = 0.00325 \ 5; \ \alpha(\text{M}) = 0.000814 \ 11; \\ \alpha(\text{N}) = 0.0002173 \ 30 \end{array} $
									α (O)=5.04×10 ⁻⁵ 7; α (P)=9.31×10 ⁻⁶ 13; α (Q)=6.08×10 ⁻⁷ 9
789.0 1 ^x 798.0 1 ^x 816 7 1	6.5 <i>3</i> 1.4 2 3 9 2	1297.17	0+	508.18	1-				
(835.7 [@])	0.27 ^{&} 11	1009.74	2+	174.12	4+	[E2]	0.01415 20		α (K)=0.01050 <i>15</i> ; α (L)=0.00274 <i>4</i> ; α (M)=0.000683 <i>10</i> ; α (N)=0.0001823 <i>26</i>
									$\alpha(O)=4.24\times10^{-5}$ 6; $\alpha(P)=7.86\times10^{-6}$ 11; $\alpha(Q)=5.34\times10^{-7}$ 7
(838.7 [@])	0.14 ^{&} 7	1012.05	3-	174.12	4+	[E1]	0.00473 7		$\alpha(K)=0.00387 5; \alpha(L)=0.000648 9; \alpha(M)=0.0001533 21; \alpha(N)=4.07\times10^{-5} 6; \alpha(O)=9.57\times10^{-6} 13$
830 0 1	222	18/10 65	(2^{+})	1000 74	2+				$\alpha(P)=1.836\times10^{-6}\ 26;\ \alpha(Q)=1.658\times10^{-7}\ 23$
867.1 3	2.2 2 5.7 <i>3</i>	1375.32	(2^{-}) (1.2^{+})	508.18	1 ⁻				
878.0 2	1.0 1	1849.65	(2^+)	971.74	2-				

6

						230 Ac β	^{8–} decay	1980Gi04 ((continued)
							$\gamma(^{230})$	Th) (continued)	<u>)</u>
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger b}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	δ	α^{a}	Comments
892.7 1	8.4 4	1400.92	(2 ⁺)	508.18	1-	[E1]		0.00423 6	$\alpha(K)=0.00347 \ 5; \ \alpha(L)=0.000577 \ 8; \ \alpha(M)=0.0001364 \ 19; \\ \alpha(N)=3.62\times10^{-5} \ 5; \ \alpha(O)=8.52\times10^{-6} \ 12 \\ \alpha(D)=4.626\times10^{-6} \ 22 \ \alpha(O)=1.488\times10^{-7} \ 21 \\ \alpha(D)=4.626\times10^{-7} \ 21 \\ \alpha(D)=4.62\times10^{-7} \ 21 \\ \alpha(D)=4.62\times10^{-7} \ 21 \\ \alpha(D)=4.62\times10^{-7} \ 21 \\ \alpha(D)=4.6\times10^{-7} \ 21 \\ \alpha$
898.5 1	3.1 3	951.99	1-	53.25	2+	E1		0.00418 6	$\begin{aligned} \alpha(P) &= 1.636 \times 10^{-5} 23; \ \alpha(Q) &= 1.488 \times 10^{-21} \\ \alpha(K) &= 0.00343 \ 5; \ \alpha(L) &= 0.000570 \ 8; \ \alpha(M) &= 0.0001347 \ 19; \\ \alpha(N) &= 3.57 \times 10^{-5} \ 5; \ \alpha(O) &= 8.42 \times 10^{-6} \ 12 \\ \alpha(P) &= 1.617 \times 10^{-6} \ 23; \ \alpha(O) &= 1.472 \times 10^{-7} \ 21 \end{aligned}$
913.7 2	1.2 3	1485.66	(4^{+})	571.80	3-				
918.6 <i>1</i>	3.5 3	971.74	2-	53.25	2+	E1		0.00402 6	α (K)=0.00330 5; α (L)=0.000547 8; α (M)=0.0001293 18; α (N)=3.43×10 ⁻⁵ 5; α (O)=8.08×10 ⁻⁶ 11 α (P)=1.553×10 ⁻⁶ 22; α (Q)=1.417×10 ⁻⁷ 20
^x 939.2 2	1.0 4								
^x 946.3 2	1.0 4	0.54.00			0	-			
952.0 1	10.1 3	951.99	1-	0.0	0+	E1		0.00377 5	$\alpha(K)=0.00309 \ 4; \ \alpha(L)=0.000513 \ 7; \ \alpha(M)=0.0001211 \ 17; \\ \alpha(N)=3.21\times10^{-5} \ 4; \ \alpha(O)=7.57\times10^{-6} \ 11 \\ \alpha(P)=1 \ 455\times10^{-6} \ 20; \ \alpha(O)=1 \ 332\times10^{-7} \ 19$
956.5 1	5.3 3	1009.74	2+	53.25	2+	M1+E2	6.1 4	0.01157 19	$\alpha(K) = 0.00883 \ 15; \ \alpha(L) = 0.002062 \ 32; \ \alpha(M) = 0.000509 \ 8; \ \alpha(N) = 0.0001356 \ 21$
959.1 2	2.3 2	1012.05	3-	53.25	2+	E1		0.00372 5	$\alpha(O)=3.17\times10^{-5} 5; \ \alpha(P)=5.94\times10^{-6} 9; \ \alpha(Q)=4.43\times10^{-7} 7$ $\alpha(K)=0.00305 4; \ \alpha(L)=0.000506 7; \ \alpha(M)=0.0001194 17;$ $\alpha(N)=3.17\times10^{-5} 4; \ \alpha(O)=7.46\times10^{-6} 10$ $\alpha(P)=1.436\times10^{-6} 20; \ \alpha(Q)=1.315\times10^{-7} 18$
^x 963.0 2	1.3 5								
968.0 2	1.2 5	2368.95?	(0^{+})	1400.92	(2^{+})				
^x 973.5 2	1.4 5								
977.6 2	0.7 3	1485.66	(4+)	508.18	1-	[E3]		0.0257 4	$\alpha(K)=0.01745\ 24;\ \alpha(L)=0.00613\ 9;\ \alpha(M)=0.001575\ 22;\\ \alpha(N)=0.000422\ 6;\ \alpha(O)=9.78\times10^{-5}\ 14\\ \alpha(P)=1.796\times10^{-5}\ 25;\ \alpha(O)=1.077\times10^{-6}\ 15$
^x 982.0 5	< 0.3								
^x 987.0 5	< 0.3								
991.2 ^d 1	1.2 3	2000.93	$(1,2^+)$	1009.74	2^{+}				
999.1 <i>1</i>	2.7 5	2078.53?		1079.46	$(2)^{-}$				
1009.7 <i>1</i>	3.0 3	1009.74	2+	0.0	0+	E2		0.00980 14	$\alpha(K)=0.00750 \ I0; \ \alpha(L)=0.001733 \ 24; \ \alpha(M)=0.000427 \ 6; \ \alpha(N)=0.0001139 \ I6 \ \alpha(Q)=2.66\times10^{-5} \ 4; \ \alpha(P)=4.99\times10^{-6} \ 7; \ \alpha(Q)=3.74\times10^{-7} \ 5$
1026.3 <i>1</i>	2.0 2	1079.46	(2) ⁻	53.25	2+	E1		0.00330 5	$\alpha(\mathbf{K}) = 0.00271 \ 4; \ \alpha(\mathbf{L}) = 0.000447 \ 6; \ \alpha(\mathbf{M}) = 0.0001055 \ 15; \\ \alpha(\mathbf{N}) = 2.80 \times 10^{-5} \ 4; \ \alpha(\mathbf{O}) = 6.60 \times 10^{-6} \ 9 \\ \alpha(\mathbf{P}) = 1.271 \times 10^{-6} \ 18; \ \alpha(\mathbf{O}) = 1.172 \times 10^{-7} \ 16$
1043.2 <i>3</i>	1.0 3	2122.79	$(1,2^+)$	1079.46	(2) ⁻				
1045.3 3	0.6 <i>3</i> 1.8 <i>4</i>	2024.73	(1+,2+)	971.74	2-				

 $^{230}_{90}\mathrm{Th}_{140}$ -7

I						²³⁰ Ac /	3 ⁻ decay 19	80Gi04 (continued)
							γ ⁽²³⁰ Th) (c	continued)
	E_{γ}^{\dagger}	I_{γ} [‡] <i>b</i>	E _i (level)	\mathbf{J}_i^{π}	$E_f = J_f^{\pi}$	Mult. [#]	α^{a}	Comments
	x1065.5 3 1068.7 3 x1003 8 4	0.5 2 0.8 3	2078.53?		1009.74 2+			
	x1106.2 3	0.7 2						
	1147.9 ^{<i>a</i>} 1	4.8 3	1973.58	$(1^+, 2^+)$	825.79 3+			
	1187.5 3	1.3 3	1695.71	$1^{(-)}, 2^+$	508.18 1			
	1198.9 2 x1212.0.2	1.8 4	2024.73	$(1^{+}, 2^{+})$	825.79 5			
	1212.0 2	1.04	1400.02	(2^{+})	174 12 4+	[E2]	0.00680.10	$\alpha(\mathbf{K}) = 0.00531.7$; $\alpha(\mathbf{L}) = 0.001117.16$; $\alpha(\mathbf{M}) = 0.000272.4$; $\alpha(\mathbf{M}) = 7.26 \times 10^{-5}.10$
	1220.7 1	11.7 0	1400.92	(2)	1/4.12 4	[1:2]	0.00080 10	$\alpha(\mathbf{O}) = 1.700 \times 10^{-5} \ 24; \ \alpha(\mathbf{P}) = 3.22 \times 10^{-6} \ 5; \ \alpha(\mathbf{Q}) = 2.60 \times 10^{-7} \ 4$
	1243.9 1	42.7 10	1297.17	0^{+}	53.25 2+			
	1252.5 3	0.8 2	2078.53?	$(1, 2^{+})$	825.79 3			
	1207.12	5.0 J 2 5 5	1775.24	$(1,2^{+})$	508.18 1			
	1208.2 5	2.5 5	1810 76	$(1 2^+)$	508 18 1-			
	^x 1306.2.4	1.4 4	1010.70	(1,2)	500.10 1			
	1311.5 2	1.8 4	2282.99	$1,2^{+}$	971.74 2-			
	1322.1 <i>I</i>	8.6 5	1375.32	$(1,2^+)$	53.25 2+			
	1347.7 1	19.1 5	1400.92	(2+)	53.25 2+	[M1,E2]	0.010 5	α (K)=0.008 4; α (L)=0.0016 7; α (M)=3.8×10 ⁻⁴ 16; α (N)=1.0×10 ⁻⁴ 4; α (O)=2.4×10 ⁻⁵ 10 (D) α (L)=6.20 (O) α (L)=0.0016 7; α (M)=3.8×10 ⁻⁴ 16; α (N)=1.0×10 ⁻⁴ 4;
	1375 / 1	1/85	1375 32	(1.2^{+})	0.0 0+			$\alpha(P) = 4.6 \times 10^{-5} 20; \ \alpha(Q) = 4.2 \times 10^{-5} 20$
	1394 5 2	205	1902 70	$(1,2^{+})$ $(1,2^{+})$	508 18 1 ⁻			
	1401.0 <i>I</i>	4.0 4	1400.92	$(1,2^{+})$ (2 ⁺)	0.0 0+	[E2]	0.00534 7	$\alpha(K)=0.00420\ 6;\ \alpha(L)=0.000840\ 12;\ \alpha(M)=0.0002034\ 28;\ \alpha(N)=5.42\times10^{-5}\ 8$ $\alpha(Q)=1.272\times10^{-5}\ 18;\ \alpha(P)=2.424\times10^{-6}\ 34;\ \alpha(Q)=2.038\times10^{-7}\ 29$
	1432.4 1	2.4 2	1485.66	(4^{+})	53.25 2+			a(0) = 12/2/10 = 10, a(1) = 12/10 = 0.0, a(2) = 1000/10 = 2)
	1455.5 2	1.8 5	2133.22?	. /	677.64 2+			
	^x 1524.6 3	1.0 4						
	1536.6 <i>3</i>	0.8 3	1589.9	0+	53.25 2+			
	1573.5 2	2.3 2	1573.51	$1^{(-)}, 2^+$	$0.0 0^+$			
	1585.4 2	2.1 2	1638.57	(0^{+})	53.25 2+			
	*1597.2 2	1.6 3	0100.000		500 10 1-			
	1625.1 3	1.4 5	2133.22?	(1.2^{+})	508.18 l			
	1642.5.2	1.94	2014.04? 1605 71	$(1,2^{+})$ 1(-) 2+	53.25 2+			
	1042.3 2	1.1 2 1 0 2	1849 65	(2^+)	$174 12 4^+$			
	1691.7 1	7.3.4	1744.93?	(2^{-}) (0^{+})	53.25 2+			
	1695 7 1	2.93	1695 71	$1^{(-)}2^+$	$0.0 0^+$			
	1717.5 1	7.8 4	1770.76	$(1,2^+)$	53.25 2+			
	1721.9 <i>1</i>	8.0 4	1775.24	$(1,2^+)$	53.25 2+			

						230	Ac β^- decay	1980Gi04 (continued)
							γ (²³⁰ Th	a) (continued)
E_{γ}^{\dagger}	Ι _γ ‡ b	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α ^{<i>a</i>}	Comments
^x 1728 <i>I</i>	< 0.3							
~1/32 I 1757 5 J	<0.3	1910 76	$(1, 2^{+})$	52.25	2+			
1/3/.3 1	10.0 3	1810.70	$(1,2^+)$	55.25	2 · 0+			
1775.3.1	1.2.5	1775.24	(1,2) $(1,2^+)$	0.0	0+			
x1787 1 5	031	1775.24	(1,2)	0.0	0			
1780 / 5	0.31	1780 /	$1^{(-)}2^+$	0.0	0^+			
1707.2.3	10.31	2368 052	(0^+)	571.80	3-	[E3]	0.00707.10	$\alpha(K) = 0.00537.8; \alpha(L) = 0.001204.17; \alpha(M) = 0.000206.4; \alpha(M) = 7.00 \times 10^{-5}.11$
1/9/.2 3	1.0 2	2308.95?	(0)	571.00	3	[E3]	0.00707 10	$\alpha(O) = 1.853 \times 10^{-5} \ 26; \ \alpha(P) = 3.52 \times 10^{-6} \ 5; \ \alpha(Q) = 2.85 \times 10^{-7} \ 4$
^1800.4 3	0.8 2	1050 2	(2-)	52.05	2+			
1805.0 5	0.6 2	1858.3	(3)	53.25	2' 0+			
1810./I	2.1 2	1810.76	$(1,2^+)$	0.0	0'			
181/./ 3	0.72	1920 (1	1(-) 2+	0.0	0+			
1839.0 Z	1.1 2	1839.61	1 ,2	0.0	0.			
x1860.0.3	0.02							
1809.0 3	2.0.3	10/0 80	$(1 2^+)$	53 25	2^{+}			
1902 7 1	0.4 5	1902 70	$(1,2^+)$	0.0	0^{+}			
1913.8 /	6.8.3	1967.03	$(1,2^+)$	53.25	2+			
1920.2 /	5.2.2	1973.58	$(1^+,2^+)$	53.25	2+			
1949.8 <i>I</i>	15.3 3	1949.89	$(1,2^+)$	0.0	$\bar{0}^{+}$			
1956.9 <i>1</i>	5.3 3	2010.15	$(1,2^+)$	53.25	2+			
1966.7 <i>3</i>	1.0 2	1967.03	$(1,2^+)$	0.0	0^{+}			
1971.3 5	0.5 2	2024.73	$(1^+, 2^+)$	53.25	2+			
1973.5 5	0.5 2	1973.58	$(1^+, 2^+)$	0.0	0^{+}			
2000.9 1	4.4 4	2000.93	$(1,2^{+})$	0.0	0^{+}			
2010.1 2	0.9 2	2010.15	$(1,2^{+})$	0.0	0^{+}			
2024.6 3	0.6 2	2024.73	$(1^+, 2^+)$	0.0	0+			
2069.5 2	3.6 3	2122.79	$(1,2^{+})$	53.25	2+			
*2084.9 2	3.13	0151.04	$(1, 2^{+})$	52.05	2+			
2098.6 1	6.43	2151.84	$(1,2^+)$	53.25	2' 0+			
2122.8 <i>I</i>	1.1 3	2122.79	$(1,2^{+})$	0.0	0.			
2150 1	0.4 I 0.4 I	2151.84	$(1 2^{+})$	0.0	0+			
x2132 1 x2187 7 3	0.41 0.82	2131.04	(1,2)	0.0	0			
x2203.0.5	0.6 2							
2229.5.5	1.1.2	2282.99	1.2^{+}	53.25	2+			
x2233.0 5	0.6 2		-,-	00.20	-			
2245.4 10	0.4 2	2298.6	$(1,2^{+})$	53.25	2+			
^x 2263 1	0.2 1							
^x 2277.0 5	0.5 2							

From ENSDF

 $^{230}_{90}{
m Th}_{140}$ -9

γ (²³⁰Th) (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger b}$	E _i (level)	\mathbf{J}_i^{π}	E _f J	π f
2282.5 3	1.4 1	2282.99	1,2+	0.0 0	-
2298.6 <i>3</i>	0.7 1	2298.6	$(1,2^+)$	0.0	-
2314 <i>I</i>	0.5 1	2314.34?	$(1,2^+)$	0.0	-
^x 2330.5 5	0.7 1				
x2356.8 5	0.2 1				
^x 2517 1	0.1 1				

[†] From 1980Gi04. Other measurement: 1973Ch24.
[‡] Relative photon intensities are from measurements in 1980Gi04.
[#] From Adopted Levels. Multipolarities in square brackets are deduced from the level scheme.
[@] From ²³⁰Pa decay. This transition was not observed in ²³⁰Ac decay.
[&] Deduced by the evaluator from the γ-ray branchings adopted from ²³⁰Pa ε decay.

^{*a*} Additional information 1.

^b For absolute intensity per 100 decays, multiply by 0.083 21.

^c Multiply placed.

^d Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

Decay Scheme (continued)

 $^{230}_{90}{\rm Th}_{140}$

²³⁰Ac β^- decay 1980Gi04

 $^{230}_{90}{\rm Th}_{140}$

Decay Scheme (continued)

²³⁰Ac β^- decay 1980Gi04

Decay Scheme (continued)

 $^{230}_{90}{\rm Th}_{140}$