$^{234}\mathrm{U}\,\alpha$ decay

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. Morse	NDS 197,259 (2024).	26-Sep-2023

Parent: ²³⁴U: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=2.455\times10^5$ y 6; $Q(\alpha)=4857.5$ 7; % α decay=100

 234 U-T_{1/2}: Recommended in 1989Ho24. Note that 2016Vi01 questions the assumption of secular equilibrium in 1989Ho24 and instead proposes 244,550<T_{1/2} (y)<247,770 (2 σ confidence level).

²³⁴U-Q(*α*): From 2021Wa16.

²³⁰Th Levels

$E(level)^{\dagger}$	$J^{\pi \dagger}$	T _{1/2} ‡
0.0	0^{+}	
53.20 2	2+	0.354 ns 9
174.10 3	4+	0.166 ns 5
508.16 5	1-	
634.9 <i>1</i>	0^{+}	
677.6 <i>1</i>	2+	

[†] Adopted values.

[‡] From 1965Ne03.

α radiations

Number in parentheses following I α , E α gives energy of daughter level.

$E\alpha^{\dagger}$	E(level)	$I\alpha^{\#}$	HF^{\ddagger}	Comments		
4108.6 15	677.6	≈0.7×10 ⁻⁵	≈63	E α : from level energy of 677.6 <i>1</i> and E α (0)=4774.6 <i>14</i> . E α (635+678)=4120 was measured by 1963Bj03.		
				I α : from I(4120 α)=3.3×10 ⁻⁵ %, measured by 1963Bj03, for the α 's populating the 635 and 678 levels, and deduced intensity of I α (635)=2.6×10 ⁻⁵ %.		
4150.6 15	634.9	2.6×10^{-5} 9	39 14	$E\alpha$: from level energy of 634.9 <i>I</i> and $E\alpha(0)$ =4774.6.		
				I α : from level scheme. I α (635+678)=3.3×10 ⁻⁵ % was obtained by 1963Bj03 from $(\alpha)(\gamma)$ and (α) (ce) coincidences.		
(4277.3 9)	508.16	4×10^{-5} 1	287 72	E α : from level adopted energy of 508.15 <i>1</i> and E α (0). This α was not observed.		
				I α : from level scheme.		
4603.5 15	174.10	0.20 1	21.1 11	E α : from E α (0)=4774.6 and level energy. The measured relative energies are: E α (0)-E α (174)=170 (1960Ba44), 170 8 (1961Ko11).		
				Iα: from 1987Bo25 and 1984Va41. Other measured intensities: Iα \leq 0.37% 11 (1960Ba44), Iα=0.3% (1961Ko11).		
4722.4 14	53.20	28.42 9	1.076 8	Eα: recommended by 1991Ry01 from measured energies: 4722.7 <i>10</i> (1955Go57), 4724.5 <i>20</i> (1967Ba43).		
				<i>Iα</i> : from 1987Bo25 and 1984Va41. Other measured <i>Iα</i> 's: 28% (1955Go57), 27.5% <i>15</i> (1960Ba44), 27% (1961Ko11).		
4774.6 14	0.0	71.38 16	1.000	Eα: recommended by 1991Ry01 from measured energies of 4774.2 <i>10</i> (1955Go57) and 4777.2 <i>20</i> (1967Ba43).		
				I α : from 1987Bo25 and 1984Va41. Other measured I α 's: 72% (1955Go57), 72.5% 30 (1960Ba44) 73% (1961Ko11)		
				12.570 50 (1700 arr), 1570 (1701 K011).		

[†] Reported measured energies of 1955Go57 and 1967Ba43 have been increased by 5.9 and 0.4 keV, respectively, as recommended by 1991Ry01, because of changes in calibration energies. Other measurements: 1953As40, 1953Va03, 1957Ha08, 1984Ac01, 1996Sa42.

[‡] The nuclear radius parameter $r_0(^{230}\text{Th})=1.52224$ 49 is deduced by assuming HF=1.0 for the ground-state to ground-state alpha

Continued on next page (footnotes at end of table)

$^{234}\mathrm{U}\,\alpha$ decay (continued)

α radiations (continued)

decay branch. [#] Absolute intensity per 100 decays.

234 U α decay (continued)									
							$\gamma(^{230}\text{Th})$		
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{d}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [‡]	α^{c}	$I_{(\gamma+ce)}d$	Comments
53.20 2	0.123 [#] 2	53.20	2+	0.0	0+	E2	227.9 32		$\alpha(L)=166.8 \ 24; \ \alpha(M)=45.7 \ 6; \ \alpha(N)=12.22 \ 17; \\ \alpha(O)=2.72 \ 4; \ \alpha(P)=0.448 \ 6; \ \alpha(Q)=0.001240 \ 17 \\ I\gamma(53.2\gamma)=0.156\% \ 6 \ was measured by 1990Ko40. \\ Intensities of transitions feeding the ground-state sum to I(\gamma+ce)(53.20\gamma)+I(4722.7\alpha)=100.1\% \ 5 \\ with I\gamma=0.123 \ 2; \ whereas I\gamma=0.156 \ 6 \ yields \\ 107.9\% \ 15. \\ Mult.: \ \alpha(L)exp=130 \ 65 \ by \ (\alpha)(L \ x \ ray)/(\alpha)(\gamma) \\ (1057Va26) \ Sca \ elso \ 2^{30}Pa \ a \ decay$
120.90 2	0.0342 [#] 5	174.10	4+	53.20	2+	E2	4.94 7	0.21 3	$\alpha(K)=0.257 \ 4; \ \alpha(L)=3.42 \ 5; \ \alpha(M)=0.940 \ 13; \ \alpha(N)=0.2520 \ 35; \ \alpha(O)=0.0562 \ 8 \ \alpha(P)=0.00936 \ 13; \ \alpha(O)=5.21\times10^{-5} \ 7$
454.95 5	2.5×10 ^{-5@} & 7	508.16	1-	53.20	2+	E1	0.01527 21	2.5×10 ⁻⁵ 7	$\alpha(K) = 0.01237 \ 17; \ \alpha(L) = 0.002202 \ 31; \alpha(M) = 0.000525 \ 7; \ \alpha(N) = 0.0001390 \ 19 \alpha(O) = 3.25 \times 10^{-5} \ 5; \ \alpha(P) = 6.15 \times 10^{-6} \ 9; \alpha(Q) = 5.10 \times 10^{-7} \ 7 E_{\gamma}: \ from \ ^{230}Pa \ \varepsilon \ decay. \ E_{\gamma} = 460 \ was \ measured \ by \ 1963Bi03 \ in \ ^{234}U \ \alpha \ decay \ by \ \alpha_{\gamma} \ coincidences.$
(503.5 ^{<i>a</i>} 2)	$\approx 0.79 \times 10^{-6b}$	677.6	2+	174.10	4+	[E2]	0.0420 6	≈1.0×10 ⁻⁶	α (K)=0.0266 4; α (L)=0.01142 16; α (M)=0.00296 4; α (N)=0.000792 11; α (O)=0.0001813 25 α (P)=3.24×10 ⁻⁵ 5; α (O)=1.463×10 ⁻⁶ 21
508.20 <i>5</i>	1.5×10 ^{-5@&} 4	508.16	1-	0.0	0+	E1	0.01222 17	1.5×10 ⁻⁵ 4	$\alpha(K)=0.00992 \ 14; \ \alpha(L)=0.001743 \ 24; \alpha(M)=0.000415 \ 6; \ \alpha(N)=0.0001099 \ 15 \alpha(O)=2.57\times10^{-5} \ 4; \ \alpha(P)=4.88\times10^{-6} \ 7; \alpha(Q)=4.13\times10^{-7} \ 6 E_{\gamma}: \ from \ ^{230}Pa \ \varepsilon \ decay. \ E_{\gamma}=510 \ was \ measured \ by \ 1963Bi03 \ in \ ^{234}U \ \alpha \ decay \ by \ \alpha_{\gamma} \ coincidences.$
581.7 2	1.2×10 ^{-5@} 5	634.9	0+	53.20	2+	E2	0.0302 4	1.2×10 ⁻⁵ 5	α(K)=0.02029 28; α(L)=0.00734 10; α(M)=0.001884 26; α(N)=0.000503 7 α(O)=0.0001158 16; α(P)=2.093×10-5 29; α(Q)=1.089×10-6 15 Eγ: from 230Ac β- decay and 230Pa ε decay. Eγ=585 was measured by 1963Bj03 in 234U α decay by αγ coincidences.
(624.4 ^{<i>a</i>} 1)	$\approx 0.84 \times 10^{-6} b$	677.6	2+	53.20	2+	E0+E2+M1	0.07 5	≈5.0×10 ⁻⁶	$\alpha(K)=0.06\ 4;\ \alpha(L)=0.012\ 6;\ \alpha(M)=0.0028\ 13;\ \alpha(N)=7.5\times10^{-4}\ 35;\ \alpha(O)=1.8\times10^{-4}\ 8\ \alpha(P)=3.4\times10^{-5}\ 17;\ \alpha(Q)=2.9\times10^{-6}\ 19\ \alpha$: deduced in ²³⁰ Pa ε decay.

ω

L

	234 U α decay (continued)							
$\gamma(^{230}\text{Th})$ (continued)								
E_{γ}^{\dagger}	I_{γ}^{d}	E _i (level)	\mathbf{J}_i^{π}	$\underline{\mathrm{E}}_{f}$ $\underline{\mathrm{J}}_{f}^{\pi}$	Mult. [‡]	α^{c}	$I_{(\gamma+ce)}d$	Comments
(634.9 ^{<i>a</i>} 2)		634.9	0^{+}	0.0 0+	E0		1.4×10 ⁻⁵ 7	E_{γ} : measured in ²³⁰ Pa ε decay. This transition was not observed in ²³⁴ U α decay.
								Total ce intensity is expected to be about 1.4×10^{-5} % from $I\gamma(581.8\gamma)/Ice(634\gamma)$ observed in ²³⁰ Pa ε decay.
(677.6 ^{<i>a</i>} 1)	$\approx 1.0 \times 10^{-6b}$	677.6	2+	0.0 0+	[E2]	0.02169 30	$\approx 1.0 \times 10^{-6}$	$ \alpha(K) = 0.01533 \ 21; \ \alpha(L) = 0.00475 \ 7; \ \alpha(M) = 0.001204 \ 17; \ \alpha(N) = 0.000322 \\ 5; \ \alpha(O) = 7.43 \times 10^{-5} \ 10 $
								α (P)=1.359×10 ⁻⁵ <i>19</i> ; α (Q)=8.03×10 ⁻⁷ <i>11</i>
[†] Except where noted, energies given as recommended by 1986LoZT. These $E\gamma'$ s were obtained from weighted average of the values measured by 1966Ah02,								

1972Sc01, 1973Ta25, 1974HeYW, and 1984Va41. Other measurements: 1951Be97, 1953As40, 1971Cl03, 1963Bj03.

[‡] From Adopted Levels. Multipolarities in square brackets are from the level scheme.

[#] Recommended by 1986LoZT from measurements of 1966Ah02, 1974HeYW, and 1984Va41.

[@] Photon intensity per 100 α decays, measured by 1963Bj03.

[&] $I\gamma(455\gamma+508\gamma)=4\times10^{-5}$ *I* was measured; $I\gamma(455\gamma)=2.5\times10^{-5}$ *7*, $I\gamma(508\gamma)=1.5\times10^{-5}$ *4* are calculated from intensity ratio of $I\gamma(508\gamma)/I\gamma(455\gamma)=0.60$ *4*, an average value of measured ratios in ²³⁰Pa and ²³⁰Ac decays.

^{*a*} Transition was not observed in ²³⁴U α decay; Ey is from ²³⁰Ac β ⁻ decay.

^b Calculated from Iy(503y):Iy(624y):Iy(678y) = 77 18:82 9:100 10, as observed in ²³⁰Ac β^- decay, and the α population of 7×10^{-6} %.

^c Additional information 1.

4

^d Absolute intensity per 100 decays.

²³⁰₉₀Th₁₄₀-4

234 U α decay

Decay Scheme

 $^{230}_{90}\text{Th}_{140}$