		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. Morse	NDS 197,259 (2024).	26-Sep-2023

Parent: ²³⁰Fr: E=0.0; J^{π} =(3); $T_{1/2}$ =19.1 s 4; Q(β^{-})=4970 12; % β^{-} decay=100 ²³⁰Fr-Q(β^{-}): From 2021Wa16.

The ²³⁰Fr β^- decay scheme is presented as given in 1987Ku04 based on coincidence data and γ -ray energy adjustments between levels. Forty six γ rays have not been placed in the decay scheme. Although a number of them can be placed by considering differences between γ -ray energies, since coincidence data are not available, such placements could not be confirmed; thus these transitions have been left unplaced in the decay scheme.

- The previous evaluation arrived at a normalization factor of 0.114 for absolute γ -ray intensities by assuming no β feeding to the ground state, and balancing the intensity of transitions populating and depoluating the first excited state. The sum of photon intensities of unplaced transitions is 203 43 (relative to I(129.1 γ)=100) using this normalization, which amounts to 22 5 percent of β^- decay. Due to this large unplaced γ -ray intensity, the unknown spin-parities of many levels, and unknown multipolarities of many γ rays, the current evaluator has opted not to provide a normalization for this dataset.
- If $J(^{230}Fr)=3$, as suggested by 1987Ku04 (from apparent β feedings to the 2⁺, 4⁺ states in ²³⁰Ra), γ -ray intensity imbalances at 6⁺, 5⁺ (or 5⁻), and 1⁻ levels suggest that these levels must be populated by additional γ rays from higher-energy levels. Besides the unplaced γ rays, some additional (not yet observed) low-energy and highly converted γ -ray transitions between rotational band states could also affect the β feedings that the present decay scheme yields.

No β^- delayed fission from ²³⁰Fr decay (<3×10⁻⁴%) (1990Me13).

²³⁰Ra Levels

E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$	E(level)
0.0‡	0+	768.48 [#] 8	(3 ⁻)	1033.92 12	(2^{+})	1341.21 22
57.48 [‡] 7	(2^+)	785.88 [@] 10	(3+)	1144.53 <i>13</i>	(4+)	1466.93 23
186.61 [‡] 8	(4^{+})	849.85 [@] 12	(4^{+})	1158.55 <i>16</i>		1522.39 19
379.11 [‡] <i>12</i>	(6 ⁺)	879.93 [#] 12	(5 ⁻)	1189.05 <i>19</i>		1897.26 12
710.96 [#] 7	(1 ⁻)	893.08 12		1211.86 <i>19</i>		2005.04 13
734.85 [@] 7	(2 ⁺)	932.22 [@] 20	(5 ⁺)	1281.15 22		2043.47 17

[†] From Adopted Levels, similar to those in 1987Ku04 from analogy to levels in neighboring nuclei, and from γ -ray transition decay pattern.

[‡] Band(A): g.s. band.

[#] Band(B): K=0 octupole-vibrational band.

[@] Band(C): K=2 γ -vibrational band.

$$(^{230}Ra)$$

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α &	Comments
57.4 ^{<i>a</i>} 1	5.9 ^{<i>a</i>} 6	57.48	(2+)	0.0	0+	[E2]	133.9 22	α (L)=98.5 <i>16</i> ; α (M)=26.7 <i>4</i> ; α (N)=7.05 <i>12</i> ; α (O)=1.494 24; α (P)=0.2145 <i>35</i> ; α (Q)=0.000480 <i>8</i> Although not reported in the experimental papers, this transition is assumed to be a doublet placed also between 3 ⁻ and 1 ⁻ members of the K=0 octupole-vibrational band. Relative transition intensity of 25 <i>8</i> for the 57.4 γ deexciting the 3 ⁻ state is obtained by assuming no β transition feeding the 1 ⁻ level at 710.9 keV. I(γ +ce)(57.4 γ)=850 is given in 1987Ku04, and I γ =6.1 <i>6</i> in 1986KuZL.
57.4 ^{ab} 1	0.18 ^{<i>a</i>} 6	768.48	(3 ⁻)	710.96	(1 ⁻)	[E2]	133.9 22	α (L)=98.5 <i>16</i> ; α (M)=26.7 <i>4</i> ; α (N)=7.05 <i>12</i> ; α (O)=1.494 <i>24</i> ; α (P)=0.2145 <i>35</i> ; α (Q)=0.000480 <i>8</i>

Continued on next page (footnotes at end of table)

				230 Fr β	decay	1986	KuZL,1987Ku	04 (continued)
						$\gamma(^{230}\text{Ra})$) (continued)	
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α &	Comments
129.1 <i>1</i>	100 7	186.61	(4 ⁺)	57.48	(2^{+})	[E2]	3.24 5	$\alpha(K)=0.304$ 4; $\alpha(L)=2.154$ 31; $\alpha(M)=0.586$
								8; $\alpha(N)=0.1547$ 22; $\alpha(O)=0.0330$ 5 $\alpha(P)=0.00480$ 7: $\alpha(O)=2.453\times10^{-5}$ 35
192.5 <i>1</i>	17.0 17	379.11	(6 ⁺)	186.61	(4 ⁺)	[E2]	0.672 9	$\alpha(K) = 0.1739 \ 24; \ \alpha(L) = 0.367 \ 5; \ \alpha(M) = 0.0991 \ 14; \ \alpha(N) = 0.0262 \ 4; \ \alpha(O) = 0.0056 \ 8 \ 14; \ \alpha(O) = 0.0056 \ $
264.5 2	3.6 4	1144.53	(4+)	879.93	(5 ⁻)	[E1]	0.0469 7	$\begin{array}{l} \alpha(\mathrm{P})=0.000829 \ 12; \ \alpha(\mathrm{Q})=8.21\times10^{-6} \ 12\\ \alpha(\mathrm{K})=0.0376 \ 5; \ \alpha(\mathrm{L})=0.00699 \ 10;\\ \alpha(\mathrm{M})=0.001668 \ 24; \ \alpha(\mathrm{N})=0.000436 \ 6;\\ \alpha(\mathrm{O})=9.73\times10^{-5} \ 14 \end{array}$
265.5 2	2.3 3	1033.92	(2+)	768.48	(3 ⁻)	[E1]	0.0464 7	$\alpha(P)=1.615\times10^{-5} 23; \ \alpha(Q)=1.020\times10^{-6} 14$ $\alpha(K)=0.0373 5; \ \alpha(L)=0.00693 10;$ $\alpha(M)=0.001653 23; \ \alpha(N)=0.000432 6;$ $\alpha(Q)=9.64\times10^{-5} 14$
323.1 2	3.5 3	1033.92	(2+)	710.96	(1 ⁻)	[E1]	0.0298 4	$\alpha(O) = 2.6 \text{ (A16)} = 17$ $\alpha(P) = 1.600 \times 10^{-5} 23; \ \alpha(Q) = 1.012 \times 10^{-6} 14$ $\alpha(K) = 0.02407 \ 34; \ \alpha(L) = 0.00435 \ 6;$ $\alpha(M) = 0.001036 \ 15; \ \alpha(N) = 0.000271 \ 4;$ $\alpha(O) = 6.07 \times 10^{-5} 9$
								$\alpha(P)=1.016\times10^{-5}$ 14; $\alpha(Q)=6.67\times10^{-7}$ 9
333.1 2 x336 2 2	2.7 <i>3</i> 2 1 2	1522.39		1189.05		[D,E2]	0.29 26	
338.9 <i>3</i>	1.0 2	1189.05		849.85	(4^{+})	[D,E2]		
375.8 2	5.8 6	1144.53	(4+)	768.48	(3 ⁻)	[E1]	0.02141 30	$\begin{aligned} &\alpha(\mathbf{K}) = 0.01735 \ 24; \ \alpha(\mathbf{L}) = 0.00308 \ 4; \\ &\alpha(\mathbf{M}) = 0.000732 \ 10; \ \alpha(\mathbf{N}) = 0.0001917 \ 27 \\ &\alpha(\mathbf{O}) = 4.30 \times 10^{-5} \ 6; \ \alpha(\mathbf{P}) = 7.24 \times 10^{-6} \ 10; \\ &\alpha(\mathbf{Q}) = 4.88 \times 10^{-7} \ 7 \end{aligned}$
^x 385.5 <i>3</i>	1.6 2							
500.8	<1.2	879.93	(5 ⁻)	379.11	(6 ⁺)	[EI]	0.01176 76	$\alpha(K)=0.00959\ 13;\ \alpha(L)=0.001648\ 23;\alpha(M)=0.000390\ 5;\ \alpha(N)=0.0001022\ 14\alpha(O)=2.303\times10^{-5}\ 32;\ \alpha(P)=3.91\times10^{-6}\ 5;\alpha(O)=2.76\times10^{-7}\ 4$
548.0 <i>3</i>	3.0 3	734.85	(2+)	186.61	(4 ⁺)	[E2]	0.0312 4	$\begin{array}{l} \alpha(\mathbf{K}) = 0.02112 \ 30; \ \alpha(\mathbf{L}) = 0.00756 \ 11; \\ \alpha(\mathbf{M}) = 0.001927 \ 27; \ \alpha(\mathbf{N}) = 0.000509 \ 7 \\ \alpha(\mathbf{O}) = 0.0001121 \ 16; \ \alpha(\mathbf{P}) = 1.799 \times 10^{-5} \ 25; \end{array}$
						@		$\alpha(Q) = 7.65 \times 10^{-7} 11$
553.2 2	4.4 4	932.22	(5 ⁺)	379.11	(6 ⁺)	[E2]®	0.0306 4	$\begin{array}{l} \alpha(\mathrm{K}) = 0.02074 \ 29; \ \alpha(\mathrm{L}) = 0.00735 \ 10; \\ \alpha(\mathrm{M}) = 0.001872 \ 26; \ \alpha(\mathrm{N}) = 0.000494 \ 7 \\ \alpha(\mathrm{O}) = 0.0001089 \ 15; \ \alpha(\mathrm{P}) = 1.749 \times 10^{-5} \ 25; \\ \alpha(\mathrm{Q}) = 7.50 \times 10^{-7} \ 11 \end{array}$
								I_{γ} : from coincidence measurements
581.9 <i>1</i>	16.6 <i>12</i>	768.48	(3-)	186.61	(4+)	[E1]	0.00872 12	(1986KuZL). $\alpha(K)=0.007134 \ 99; \ \alpha(L)=0.001207 \ 17;$ $\alpha(M)=0.000285 \ 4; \ \alpha(N)=7.47\times10^{-5} \ 10$ $\alpha(O)=1.688\times10^{-5} \ 24; \ \alpha(P)=2.88\times10^{-6} \ 4;$ (O) = 2.072 \ 10 ⁻⁷ \ 20
587.0 2	7.8.8	1466.93		879.93	(5^{-})			$\alpha(Q) = 2.073 \times 10^{-5} 29$
599.3 1	17.3 12	785.88	(3+)	186.61	(4 ⁺)	[E2] [@]	0.0256 4	α (K)=0.01781 25; α (L)=0.00580 8; α (M)=0.001469 21; α (N)=0.000388 5; α (O)=8.57×10 ⁻⁵ 12 α (P)=1.387×10 ⁻⁵ 10; α (O)=6.38×10 ⁻⁷ 0
^x 619.8 <i>3</i>	3.7 4							$u(r) = 1.367 \times 10^{-19}$; $u(Q) = 0.38 \times 10^{-9}$

230 Fr β^- decay 1986KuZL,1987Ku04 (continued)

γ (²³⁰Ra) (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	$\alpha^{\&}$	Comments
^x 633.3 2 653.4 1	5.2 5 23.0 <i>16</i>	710.96	(1 ⁻)	57.48 (2 ⁺)	[E1]	0.00697 10	$\alpha(K)=0.00571 \ 8; \ \alpha(L)=0.000956 \ 13; \\ \alpha(M)=0.0002255 \ 32; \ \alpha(N)=5.91\times10^{-5} \ 8 \\ \alpha(O)=1.337\times10^{-5} \ 19; \ \alpha(P)=2.288\times10^{-6} \ 32; \\ \alpha(O)=1.672\times10^{-7} \ 23$
663.2 1	29.7 21	849.85	(4+)	186.61 (4+)	[E2] [@]	0.02054 29	$\alpha(Q) = 1.012713 + 2.5$ $\alpha(K) = 0.01472 + 2.1; \ \alpha(L) = 0.00435 + 6;$ $\alpha(M) = 0.001095 + 15; \ \alpha(N) = 0.000289 + 4;$ $\alpha(O) = 6.40 \times 10^{-5} + 9$ $\alpha(P) = 1.046 \times 10^{-5} + 15; \ \alpha(Q) = 5.21 \times 10^{-7} + 7$
677.4 <i>1</i>	61 4	734.85	(2 ⁺)	57.48 (2 ⁺)	[E2] [@]	0.01963 27	$\alpha(K)=0.01415\ 20;\ \alpha(L)=0.00411\ 6;\ \alpha(M)=0.001031\ 14;\ \alpha(N)=0.000272\ 4;\ \alpha(O)=6.04\times10^{-5}\ 8$ $\alpha(P)=9\ 87\times10^{-6}\ 14;\ \alpha(O)=5\ 00\times10^{-7}\ 7$
693.3 1	23.2 16	879.93	(5 ⁻)	186.61 (4 ⁺)	[E1]	0.00623 9	$\begin{aligned} \alpha(K) = 0.00511 \ 7; \ \alpha(L) = 0.000851 \ 12; \\ \alpha(M) = 0.0002005 \ 28; \ \alpha(N) = 5.26 \times 10^{-5} \ 7 \\ \alpha(O) = 1.189 \times 10^{-5} \ 17; \ \alpha(P) = 2.039 \times 10^{-6} \ 29; \\ \alpha(Q) = 1.500 \times 10^{-7} \ 21 \end{aligned}$
x699.1 2	6.5 5	803.08		196.61 (1+)			
711.0 ^{<i>a</i>} 1	$24^{a} 6$	710.96	(1 ⁻)	0.0 0 ⁺	[E1]	0.00594 8	$\alpha(K)=0.00488$ 7; $\alpha(L)=0.000810$ 11; $\alpha(M)=0.0001908$ 27; $\alpha(N)=5.00\times10^{-5}$ 7 $\alpha(O)=1.132\times10^{-5}$ 16; $\alpha(P)=1.942\times10^{-6}$ 27; $\alpha(Q)=1.433\times10^{-7}$ 20 L: from coincidence measurements
711.0 ^a 1	124 ^{<i>a</i>} 12	768.48	(3 ⁻)	57.48 (2 ⁺)	[E1]	0.00594 8	(1986KuZL). $\alpha(K)=0.00488\ 7;\ \alpha(L)=0.000810\ 11;$ $\alpha(M)=0.0001908\ 27;\ \alpha(N)=5.00\times10^{-5}\ 7$ $\alpha(O)=1.132\times10^{-5}\ 16;\ \alpha(P)=1.942\times10^{-6}\ 27;$ $\alpha(Q)=1.433\times10^{-7}\ 20$ I _y : from coincidence measurements (1986KuZL).
728.4 1	66 4	785.88	(3+)	57.48 (2 ⁺)	[E2] [@]	0.01687 24	$\alpha(\mathbf{K})=0.01237 \ 17; \ \alpha(\mathbf{L})=0.00338 \ 5; \\ \alpha(\mathbf{M})=0.000844 \ 12; \ \alpha(\mathbf{N})=0.0002224 \ 31 \\ \alpha(\mathbf{O})=4.95\times10^{-5} \ 7; \ \alpha(\mathbf{P})=8.14\times10^{-6} \ 11; \\ \alpha(\mathbf{O})=4.33\times10^{-7} \ 6.53\times10^{-7} \ 6.53\times10^{-7} \ 6.53\times10^{-7} \ 6.53\times10^{-7} \ 10^{-7} \ 6.53\times10^{-7} \ 10$
734.9 <i>1</i>	54 4	734.85	(2+)	0.0 0+	[E2]	0.01657 23	$\alpha(Q)=4.33\times10^{-6} 0^{-6}$ $\alpha(K)=0.01217 17; \ \alpha(L)=0.00330 5;$ $\alpha(M)=0.000823 12; \ \alpha(N)=0.0002171 30$ $\alpha(O)=4.83\times10^{-5} 7; \ \alpha(P)=7.96\times10^{-6} 11;$ $\alpha(Q)=4.26\times10^{-7} 6$
745.4 3	14.8 22	932.22	(5 ⁺)	186.61 (4 ⁺)	[E2] [@]	0.01609 23	$\alpha(K)=0.01186 \ 17; \ \alpha(L)=0.00318 \ 4; \\ \alpha(M)=0.000793 \ 11; \ \alpha(N)=0.0002090 \ 29 \\ \alpha(O)=4.65\times10^{-5} \ 7; \ \alpha(P)=7.67\times10^{-6} \ 11; \\ \alpha(Q)=4.14\times10^{-7} \ 6$
754.0 <i>5</i> 765.5 <i>3</i>	4.4 <i>11</i> 4.1 5	1522.39 1144.53	(4+)	768.48 (3 ⁻) 379.11 (6 ⁺)	[E2]	0.01524 21	$\alpha(\mathbf{K})=0.01129 \ 16; \ \alpha(\mathbf{L})=0.00297 \ 4; \\ \alpha(\mathbf{M})=0.000738 \ 10; \ \alpha(\mathbf{N})=0.0001946 \ 27 \\ \alpha(\mathbf{O})=4.34\times10^{-5} \ 6; \ \alpha(\mathbf{P})=7.16\times10^{-6} \ 10; \\ \alpha(\mathbf{O})=3.93\times10^{-7} \ 6$
792.4 2	18.4 <i>13</i>	849.85	(4+)	57.48 (2 ⁺)	[E2]	0.01421 20	$\alpha(K)=0.01060 \ 15; \ \alpha(L)=0.00272 \ 4; \\ \alpha(M)=0.000674 \ 9; \ \alpha(N)=0.0001776 \ 25; \\ \alpha(O)=3.96\times10^{-5} \ 6 \\ \alpha(P)=6.56\times10^{-6} \ 9; \ \alpha(Q)=3.68\times10^{-7} \ 5$

Continued on next page (footnotes at end of table)

				230 Fr β^{-}	decay	1986Kı	1ZL,1987Ku04	(continued)
						$\gamma(^{230}\text{Ra})$ ((continued)	
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	a&	Comments
x801.9 3 811.9 3 832.4 3 835.5 3	1.7 3 6.8 7 3.7 4 11.8 12	1522.39 1211.86 893.08		710.96 379.11 57.48	(1^{-}) (6^{+}) (2^{+})			
*840.4 5 847.2 <i>3</i>	2.8 4 5.9 7	1033.92	(2 ⁺)	186.61	(4+)	[E2]	0.01243 17	α (K)=0.00938 <i>13</i> ; α (L)=0.002295 <i>32</i> ; α (M)=0.000567 <i>8</i> ; α (N)=0.0001494 <i>21</i> α (O)=3.34×10 ⁻⁵ <i>5</i> ; α (P)=5.56×10 ⁻⁶ <i>8</i> ; α (O)=3.24×10 ⁻⁷ <i>5</i>
863.5 <i>3</i> ^x 886.0 2	2.7 <i>3</i> 4.8 5	1897.26		1033.92	(2 ⁺)			
898.7 2 958.0 2	8.1 8 6.5 7	2043.47 1144.53	(4+)	1144.53 186.61	(4 ⁺) (4 ⁺)	[M1,E2]	0.021 11	α (K)=0.017 9; α (L)=0.0031 14; α (M)=7.5×10 ⁻⁴ 34; α (N)=2.0×10 ⁻⁴ 9; α (O)=4.5×10 ⁻⁵ 21 α (P)=8.E-6 4; α (O)=5.8×10 ⁻⁷ 32
^x 965.8 2 971.8 2	4.9 <i>5</i> 150 <i>1</i> 5	1158 55		186 61	(4^{+})			
976.3 3	8.2 8	1033.92	(2 ⁺)	57.48	(2 ⁺)	[M1,E2]	0.020 10	$\alpha(K)=0.016 \ 9; \ \alpha(L)=0.0030 \ 14;$ $\alpha(M)=7.2\times10^{-4} \ 32; \ \alpha(N)=1.9\times10^{-4} \ 8;$ $\alpha(O)=4.3\times10^{-5} \ 19$ $\alpha(P)=7.4\times10^{-6} \ 35; \ \alpha(O)=5.5\times10^{-7} \ 31$
^x 986.5 3	1.6 2	1190.05		106 61	(4+)			
1002.2 3 1004.3 3	15.5 14	189.05		893.08	(4*)			
1018.8 3	4.3 <i>5</i> 7.3 <i>7</i>	1211.86		186.61	(4 ⁺)			
1033.8 5	3.0 5	1033.92	(2+)	0.0	0+	[E2]	0.00845 12	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00656 \ 9; \ \alpha(\mathbf{L}) = 0.001428 \ 20; \\ &\alpha(\mathbf{M}) = 0.000348 \ 5; \ \alpha(\mathbf{N}) = 9.18 \times 10^{-5} \ 13 \\ &\alpha(\mathbf{O}) = 2.063 \times 10^{-5} \ 29; \ \alpha(\mathbf{P}) = 3.48 \times 10^{-6} \ 5; \\ &\alpha(\mathbf{Q}) = 2.221 \times 10^{-7} \ 31 \end{aligned}$
1049.2 <i>3</i> 1086.9 <i>5</i>	3.0 5	1144.53	(4+)	57.48	(2+)	[E2]	0.00768 11	α (K)=0.00599 8; α (L)=0.001274 18; α (M)=0.000310 4; α (N)=8.17×10 ⁻⁵ 11 α (O)=1.837×10 ⁻⁵ 26; α (P)=3.11×10 ⁻⁶ 4; α (O)=2.022×10 ⁻⁷ 28
1094.8 <i>3</i> 1101.2 <i>2</i>	18.0 <i>18</i> 14.1 <i>11</i>	1281.15 1158.55		186.61 57.48	(4^+) (2^+)			$u(Q) = 2.022 \times 10^{-2.0}$
1111.8 3	4.5 J 6.6 7	1897.26		785.88	(3^+)			
1128.8 2 1154.6 2 1162.6 2 ×1191.6 5	21.5 <i>15</i> 15.4 <i>11</i> 24.6 <i>17</i> 4 1 5	1897.26 1341.21 1897.26		768.48 186.61 734.85	(3) (4^+) (2^+)			
1219.0 <i>5</i> 1223.4 <i>3</i>	4.7 <i>5</i> 14.1 <i>14</i>	2005.04 1281.15		785.88 57.48	(3^+) (2^+)			
x1230.8 5 1236.6 3	2.8 <i>3</i> 10.7 <i>11</i>	2005.04		768.48	(3 ⁻)			
1259.1 5	1.0 <i>3</i> 10.8 <i>11</i>	2005.04		734.85	(2 ⁺)			
1274.6 <i>3</i> 1294.0 2	4.8 7 12 5 13	2043.47 2005.04		768.48 710.96	(3^{-}) (1^{-})			
x1326.1 3 x1330.2 5	2.3 <i>4</i> 1.8 5	2000.01		, 10.90	(*)			

Continued on next page (footnotes at end of table)

				²³⁰ Fr	β^- decay	1986KuZL,1987Ku04 (continued)					
					<u> γ(</u>	²³⁰ Ra) (cor	ntinued)				
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	E_f	\mathbf{J}_f^{π}	E_{γ}^{\dagger}	I_{γ}	E_i (level)	E_f	\mathbf{J}_f^{π}		
^x 1349.6.5	2.0 4				^x 1750.5.5	2.4 4					
^x 1365.1 5	2.4 5				^x 1793.7 5	2.6 4					
1465.0 5	1.2 3	1522.39	57.48	(2^{+})	1839.3 5	3.2 5	1897.26	57.48	(2^{+})		
^x 1473.7 5	1.8 6				1857.8 <i>3</i>	8.1 8	2043.47	186.61	(4^{+})		
^x 1495.3 5	4.6 7				^x 1869.4 3	23.7 24					
^x 1519.9 5	2.1 4				^x 1880.1 3	9.6 10					
^x 1545.4 5	6.9 7				^x 1883.9 5	2.3 5					
^x 1562.4 5	4.8 7				^x 1887.9 5	3.8 6					
^x 1601.3 5	2.3 4				^x 1908.3 5	1.9 <i>3</i>					
^x 1605.1 5	3.4 5				^x 1927.4 5	4.6 5					
^x 1610.0 5	3.5 5				1947.7 <i>3</i>	14.5 15	2005.04	57.48	(2^{+})		
^x 1615.8 5	4.0 6				^x 1987.4 5	7.1 7					
^x 1662.6 5	4.2 6				^x 2013.7 5	6.8 7					
^x 1702.0 3	8.2 8				^x 2041.5 5	3.1 3					
1710.2 2	15.6 16	1897.26	186.61	(4^{+})	^x 2093.1 5	7.7 8					
^x 1737.5 5	4.7 5				^x 2232.6 5	3.0 3					
^x 1744.4 5	4.2 4				^x 2376.5 5	4.1 4					

[†] From 1986KuZL and 1987Ku04.
[‡] Relative photon intensities are from 1986KuZL. Transition intensities are shown in 1987Ku04 on their decay scheme.
[#] Assumed from the level scheme; they were not determined experimentally.

[@] Branching ratios of γ rays to the K=0 g.s. band imply that any possible M1 admixture is small (M1 transitions from a K=2 band to the K=0 band would be K forbidden). See 1987Ku04 for comparison of experimental and theoretical branching ratios.

[&] Additional information 1. ^a Multiply placed with intensity suitably divided.

^b Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

Decay Scheme

 $^{230}_{88}$ Ra $_{142}$

6

Decay Scheme (continued)

²³⁰₈₈Ra₁₄₂

7

 $^{230}_{88} Ra_{142}$