230 Ra β^- decay 1980Gi04

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. Morse	NDS 197,259 (2024).	26-Sep-2023

Parent: ²³⁰Ra: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=93 \text{ min } 2$; $Q(\beta^-)=678 \ 19$; $\%\beta^-$ decay=100 ²³⁰Ra-Q(β^-): From 2021Wa16.

A tentative decay scheme is given as proposed by 1980Gi04. It was constructed from γ -ray energy adjustments to level energies,

and from γ -ray intensity considerations. Source strength was insufficient for $\gamma\gamma$ coincidence studies. 1980Gi04 studied the decay of ²³⁰Ra without interference from the decay of its daughter ²³⁰Ac (122 sec) by a process of continuous chemical separation.

²³⁰Ac Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}		Comments
0.0	(1^+)	122 s 3	J^{π} : From Adopted Levels.	
8.99 6	$(0,1,2)^+$		1	
72.01 7	1-			
101.07 6	1+			
151.52? 9	(1^{+})			
198.17 6	1-			
211.78 6	1+			
264.69 9				
285.19 7	1+			
292.91 8				
346.07 8	1+			
375.72 13				
395.27 12	1-			
457.92 7	1+			
478.70 7	1+			
536.73 11	1^{+}			
581.16 10	1+			
591.56? 11	1+			
635.77? 18	1+			

[†] Proposed in 19080Gi04, based on expected quasiparticle states from Nilsson diagrams.

β^{-} radiations

E(decay)	E(level)	Ιβ ^{-†‡}	Log ft	Comments
(42 19)	635.77?	0.22 6	4.3 8	av E β =10.7 50
(86 19)	591.56?	0.47 14	4.9 4	av E β =22.3 52
(97 19)	581.16	0.91 16	4.8 <i>3</i>	av E β =25.1 52
(141 19)	536.73	2.0 5	4.94 23	av E β =37.3 53
(199 19)	478.70	5.6 10	4.96 16	av E β =53.7 55
(220 19)	457.92	3.9 6	5.25 14	av E β =59.7 56
(283 19)	395.27	0.77 17	6.30 14	av E β =78.3 58
(302 19)	375.72	0.16 4	7.08 15	av E β =84.2 58
(332 19)	346.07	3.4 9	5.88 15	av E β =93.2 59
(385 19)	292.91	0.34 9	7.09 14	av E β =109.8 61
(393 19)	285.19	4.8 13	5.97 14	av E β =112.3 61
(413 19)	264.69	0.17 7	7.49 19	av E β =118.8 61
(466 19)	211.78	8.6 24	5.95 14	av $E\beta = 135.9\ 62$
(480 19)	198.17	0.6 4	7.2 3	av E β =140.3 63
(527 19)	151.52?	0.8 <i>3</i>	7.16 18	av E β =155.7 64
(577 19)	101.07	11 4	6.15 17	av $E\beta = 172.6\ 65$
(606 19)	72.01	16 <i>3</i>	6.06 10	av $E\beta = 182.5\ 66$

230 Ra β^- decay 1980Gi04 (continued)

β^{-} radiations (continued)

E(decay)	E(level)	Iβ ^{-†‡}	Log ft		Comments
(678 19)	0.0	41 6	5.82 8	av E β =207.3 67	
				$I\beta$ (g.s. + 9 keV)=41% 6.	

[†] Deduced by evaluator from γ -ray transition intensity balance, using I γ normalization=0.085 21.

[‡] Absolute intensity per 100 decays.

 $\gamma(^{230}{\rm Ac})$

Iγ normalization: From Iγ(454.9γ from ²³⁰Ac β⁻ decay)=8.3 % 21 deduced by evaluator, corrected by a factor $F=T_{1/2}^{Ra}/(T_{1/2}^{Ra}-T_{1/2}^{Ac})$, assuming ²³⁰Ac (122 sec) was in transient equilibrium with ²³⁰Ra (93 min) during the measurement.

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^π	Mult. [#]	α &	Comments
(9.0 [@]) 49.2 <i>1</i>	2.6 5	8.99 395.27	$(0,1,2)^+$ 1 ⁻	0.0 346.07	(1 ⁺) 1 ⁺	[E1]	0.750 11	%I γ =0.22 7 α (L)=0.566 8; α (M)=0.1391 21; α (N)=0.0361 5; α (O)=0.00781 12; α (P)=0.001221 18
63.0 <i>1</i>	40 2	72.01	1-	8.99	(0,1,2)+	[E1]	0.388 6	$\begin{array}{l} \alpha(\mathbf{Q}) = 5.20 \times 10^{-5} 8 \\ \Re[\gamma = 3.4 \ 9 \\ \alpha(\mathbf{L}) = 0.293 \ 4; \ \alpha(\mathbf{M}) = 0.0716 \ 10; \\ \alpha(\mathbf{N}) = 0.01863 \ 27; \ \alpha(\mathbf{O}) = 0.00408 \ 6; \\ \alpha(\mathbf{P}) = 0.000656 \ 10 \end{array}$
72.0 1	113 6	72.01	1-	0.0	(1+)	[E1]	0.272 4	$\begin{array}{l} \alpha(\mathbf{Q}) = 3.07 \times 10^{-5} \ 4 \\ \%_{1} = 9.6 \ 24 \\ \alpha(\mathbf{L}) = 0.2057 \ 30; \ \alpha(\mathbf{M}) = 0.0501 \ 7; \\ \alpha(\mathbf{N}) = 0.01304 \ 19; \ \alpha(\mathbf{O}) = 0.00287 \ 4; \\ \alpha(\mathbf{P}) = 0.000468 \ 7 \end{array}$
92.1 <i>1</i>	21 5	101.07	1+	8.99	(0,1,2)+	[M1]	4.36 6	$\alpha(Q)=2.298\times10^{-5} 33$ %I γ =1.8 6 $\alpha(L)=3.30 5; \alpha(M)=0.791 11;$ $\alpha(N)=0.2100 30; \alpha(O)=0.0488 7;$ $\alpha(P)=0.00903 13$
101.0 <i>1</i>	16 <i>3</i>	101.07	1+	0.0	(1+)	[M1]	3.34 5	$\alpha(Q) = 0.000802 \ 12$ %Iy=1.4 4 $\alpha(L) = 2.53 \ 4; \ \alpha(M) = 0.606 \ 9; \ \alpha(N) = 0.1607$ 23; $\alpha(Q) = 0.0374 \ 5; \ \alpha(P) = 0.00691 \ 10$
110.7 <i>1</i> ^x 117.8 <i>3</i> ^x 125 3 3	3.1 <i>3</i> <0.3	211.78	1+	101.07	1+			$\alpha(Q)=0.000614 \ 9$ %I $\gamma=0.26 \ 7$ %I $\gamma=0.026 \ 6$ %I $\gamma=0.026 \ 6$
132.7 <i>3</i> 134.3 <i>1</i>	<0.3 4.5 5	478.70 346.07	1+ 1+	346.07 211.78	1+ 1+	[M1]	7.36 10	$\%_{I} = 0.026 \ 6$ $\%_{I} = 0.026 \ 6$ $\%_{I} = 0.38 \ 10$ $\alpha(K) = 5.89 \ 8; \ \alpha(L) = 1.112 \ 16; \ \alpha(M) = 0.267$ $4; \ \alpha(N) = 0.0707 \ 10; \ \alpha(O) = 0.01645 \ 23$ $\alpha(P) = 0.00304 \ 4; \ \alpha(O) = 0.000270 \ 4$
x138.7 2 141.4 2 147.9 <i>I</i>	0.6 2 0.7 2 5.6 3	292.91 346.07	1+	151.52? 198.17	(1 ⁺) 1 ⁻	[E1]	0.1900 27	$ \begin{array}{l} \alpha(\mathbf{r}) = 0.0052474, \ \alpha(\mathbf{q}) = 0.00027647 \\ \% \mathrm{Iy} = 0.05027647 \\ \% \mathrm{Iy} = 0.06022 \\ \% \mathrm{Iy} = 0.4812 \\ \alpha(\mathbf{K}) = 0.149021; \ \alpha(\mathbf{L}) = 0.03104; \\ \alpha(\mathbf{M}) = 0.0074711; \ \alpha(\mathbf{N}) = 0.00195828; \\ \alpha(\mathbf{O}) = 0.0004406 \\ \alpha(\mathbf{P}) = 7.57 \times 10^{-5}11; \ \alpha(\mathbf{Q}) = 4.65 \times 10^{-6}7 \end{array} $

					230 Ra β^-	decay 1	980Gi04 (co	ntinued)
γ ⁽²³⁰ Ac) (continued)								
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger a}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^π	Mult. [#]	α &	Comments
151.5 <i>1</i>	2.0 2	151.52?	(1 ⁺)	0.0	(1 ⁺)	[M1]	5.23 7	%Iγ=0.17 5 α (K)=4.19 6; α (L)=0.788 11; α (M)=0.1889 27; α (N)=0.0501 7; α (O)=0.01165 16 α (P)=0.002155 30; α (O)=0.0001910 27
177.5 <i>3</i> 184.1 <i>1</i>	0.6 2 11.5 <i>3</i>	375.72 285.19	1+	198.17 101.07	1 ⁻ 1 ⁺	[M1]	3.01 4	$\%$ I γ =0.051 21 $\%$ I γ =0.051 21 $\%$ I γ =0.98 24 α (K)=2.416 34; α (L)=0.453 6; α (M)=0.1085 15; α (N)=0.0288 4; α (O)=0.00669 9
189.2 <i>1</i>	16.7 5	198.17	1-	8.99	(0,1,2)+	[E1]	0.1053 <i>15</i>	$\begin{array}{l} \alpha(\mathrm{P}) = 0.001238 \ 17; \ \alpha(\mathrm{Q}) = 0.0001097 \ 15 \\ \% \mathrm{I}\gamma = 1.42 \ 35 \\ \alpha(\mathrm{K}) = 0.0834 \ 12; \ \alpha(\mathrm{L}) = 0.01655 \ 23; \\ \alpha(\mathrm{M}) = 0.00398 \ 6; \ \alpha(\mathrm{N}) = 0.001044 \ 15 \\ \end{array}$
192.6 <i>1</i> 197.1 2	1.4 <i>3</i> 1.3 2	264.69 395.27	1-	72.01 198.17	1- 1-	[M1]	2.49 4	$\alpha(O)=0.0002362 \ 33; \ \alpha(P)=4.11\times10^{-3} \ 6; \\ \alpha(Q)=2.69\times10^{-6} \ 4 \\ \% I\gamma=0.12 \ 4 \\ \% I\gamma=0.111 \ 32 \\ \alpha(K)=1.994 \ 28; \ \alpha(L)=0.373 \ 5; \ \alpha(M)=0.0895 $
198.2 <i>1</i>	3.4 4	198.17	1-	0.0	(1+)	[E1]	0.0943 13	<i>13</i> ; α (N)=0.02373 <i>34</i> ; α (O)=0.00552 <i>8</i> α (P)=0.001021 <i>15</i> ; α (Q)=9.04×10 ⁻⁵ <i>13</i> %I γ =0.29 <i>8</i> α (K)=0.0748 <i>11</i> ; α (L)=0.01473 <i>21</i> ; α (M)=0.00354 <i>5</i> ; α (N)=0.000929 <i>13</i>
202.8 1	30.8 10	211.78	1+	8.99	(0,1,2)+	[M1]	2.296 32	α (O)=0.0002103 30; α (P)=3.67×10 ⁻⁵ 5; α (Q)=2.429×10 ⁻⁶ 34 %I γ =2.6 7 α (K)=1.841 26; α (L)=0.344 5; α (M)=0.0825 I_2 : α (N)=0.02190 3 I : α (O)=0.00509 7
211.8 <i>I</i>	11.3 <i>3</i>	211.78	1+	0.0	(1+)	[M1]	2.033 29	$\begin{aligned} \alpha(P) = 0.000942 \ I3; \ \alpha(Q) = 8.34 \times 10^{-5} \ I2 \\ \% I\gamma = 0.96 \ 24 \\ \alpha(K) = 1.630 \ 23; \ \alpha(L) = 0.305 \ 4; \ \alpha(M) = 0.0730 \\ I0; \ \alpha(N) = 0.01937 \ 27; \ \alpha(O) = 0.00450 \ 6 \\ (D) \ \alpha(D) = 0.002024 \ 10^{-5} \ 10^{-5} \ 10^{-5} \end{aligned}$
^x 236.3 <i>3</i> ^x 247.4 <i>3</i> 251.5 <i>1</i>	<0.3 <0.3 9.9 5	536.73	1+	285.19	1+	[M1]	1.259 18	$\alpha(P)=0.000833 \ I2; \ \alpha(Q)=7.38\times10^{-3} \ I0$ %I γ =0.026 6 %I γ =0.026 6 %I γ =0.84 21 $\alpha(K)$ =1.010 14; $\alpha(L)$ =0.1883 26; $\alpha(M)$ =0.0451 6; $\alpha(N)$ =0.01196 17; $\alpha(Q)$ =0.00278 4
255.7 2 259.9 2	1.6 <i>4</i> 3.4 <i>5</i>	264.69 457.92	1+	8.99 198.17	(0,1,2) ⁺ 1 ⁻	[E1]	0.0501 7	$\alpha(0) \ 0.000515 \ 7; \ \alpha(Q) = 4.56 \times 10^{-5} \ 6$ %Iy=0.14 5 %Iy=0.29 8 $\alpha(K) = 0.0401 \ 6; \ \alpha(L) = 0.00757 \ 11;$ $\alpha(M) = 0.0011812 \ 26; \ \alpha(N) = 0.000477 \ 7$ $\alpha(Q) = 0.0001084 \ 15; \ \alpha(P) = 1.915 \times 10^{-5} \ 27;$
274.6 2 285.2 <i>1</i>	1.0 <i>3</i> 18.2 <i>7</i>	375.72 285.19	1+	101.07 0.0	1+ (1 ⁺)	[M1]	0.889 12	$\begin{array}{l} \alpha(Q) = 0.306100 + 10^{-6} \ 19 \\ \alpha(Q) = 1.346 \times 10^{-6} \ 19 \\ \% I\gamma = 0.085 \ 33 \\ \% I\gamma = 1.5 \ 4 \\ \alpha(K) = 0.714 \ 10; \ \alpha(L) = 0.1327 \ 19; \\ \alpha(M) = 0.0318 \ 4; \ \alpha(N) = 0.00843 \ 12; \\ \alpha(O) = 0.001960 \ 28 \end{array}$
288.2 2 292.9 <i>1</i> 296.1 2	1.0 <i>3</i> 4.3 <i>6</i> 1.2 <i>2</i>	581.16 292.91 581.16	1+ 1+	292.91 0.0 285.19	(1 ⁺) 1 ⁺	[M1]	0.801 11	α (P)=0.000363 5; α (Q)=3.21×10 ⁻⁵ 5 %I γ =0.085 33 %I γ =0.37 10 %I γ =0.102 30 α (K)=0.644 9; α (L)=0.1196 17;

230 Ra β^- decay 1980Gi04 (continued) $\gamma(^{230}\text{Ac})$ (continued) $I_{\gamma}^{\ddagger a}$ α**&** Mult.# E_{γ}^{\dagger} E_i(level) \mathbf{J}_i^{π} \mathbf{E}_{f} J_f^{π} Comments $\alpha(M)=0.0286 4; \alpha(N)=0.00759 11;$ α(O)=0.001766 25 $\alpha(P)=0.000327 5; \alpha(Q)=2.89\times10^{-5} 4$ x297.6 2 0.5 2 %Iy=0.043 20 316.4 1 1.0 2 581.16 1^{+} 264.69 $\% I_{\gamma} = 0.085 \ 27$ $\% I\gamma = 0.051 \ 21$ x363.9 3 0.6 2 375.8 2 (1^{+}) $\%I\gamma = 0.026 \ 11$ 0.3 1 375.72 0.0 x412.9 1 0.9.2 %Iy=0.076 25 437.7 3 0.3 1 635.77? 1^{+} [E1] 0.01601 23 %Iy=0.026 11 198.17 1- $\alpha(K)=0.01299\ 18;\ \alpha(L)=0.002294\ 32;$ $\alpha(M)=0.000546 8; \alpha(N)=0.0001437 20$ $\alpha(O)=3.30\times10^{-5}$ 5; $\alpha(P)=5.93\times10^{-6}$ 8; $\alpha(Q) = 4.60 \times 10^{-7} 6$ $%I\gamma = 0.026 11$ 440.0 3 0.3 1 591.56? 1^{+} 151.52? (1⁺) [M1] 0.272~4 $\alpha(K)=0.2190 \ 31; \ \alpha(L)=0.0404 \ 6;$ $\alpha(M)=0.00965$ 14: $\alpha(N)=0.00256$ 4: α(O)=0.000595 8 $\alpha(P)=0.0001101 \ 16; \ \alpha(Q)=9.76\times 10^{-6} \ 14$ 448.9 1 15.0 5 457.92 1^{+} 8.99 $(0,1,2)^+$ [M1] 0.258 4 %Iy=1.27 32 $\alpha(K)=0.2075\ 29;\ \alpha(L)=0.0382\ 5;$ $\alpha(M)=0.00914 \ 13; \ \alpha(N)=0.002423 \ 34;$ $\alpha(O)=0.000563 8$ $\alpha(P)=0.0001042$ 15; $\alpha(Q)=9.24\times10^{-6}$ 13 1^{+} 457.9 1 18.5 6 457.92 0.0 (1^{+}) 0.2445 34 %I γ =1.6 4 [M1] $\alpha(K)=0.1967\ 28;\ \alpha(L)=0.0362\ 5;$ $\alpha(M)=0.00866\ 12;\ \alpha(N)=0.002296\ 32;$ α(O)=0.000534 7 $\alpha(P)=9.88\times10^{-5}$ 14; $\alpha(Q)=8.76\times10^{-6}$ 12 1^{+} 469.7 1 478.70 8.99 0.2283 32 $%I\gamma = 2.56$ 29.3 10 $(0,1,2)^+$ [M1] $\alpha(K)=0.1837\ 26;\ \alpha(L)=0.0338\ 5;$ $\alpha(M)=0.00808 \ 11; \ \alpha(N)=0.002143 \ 30;$ $\alpha(O)=0.000498$ 7 $\alpha(P)=9.22\times10^{-5}$ 13; $\alpha(Q)=8.18\times10^{-6}$ 11 ^x473.5 3 < 0.3 %Iy=0.026 6 1^{+} (1^{+}) %I γ =2.1 5 478.7 1 24.2 10 478.70 0.0 [M1] 0.2170 30 $\alpha(K)=0.1746\ 24;\ \alpha(L)=0.0321\ 4;$ $\alpha(M)=0.00768 \ 11; \ \alpha(N)=0.002035 \ 29;$ a(O)=0.000473 7 $\alpha(P)=8.76\times10^{-5}$ 12; $\alpha(Q)=7.77\times10^{-6}$ 11 484.2 2 1.9 4 635.77? 1^{+} 151.52? (1+) [M1] 0.2104 30 %I γ =0.16 5 $\alpha(K)=0.1693\ 24;\ \alpha(L)=0.0311\ 4;$ $\alpha(M)=0.00744$ 10; $\alpha(N)=0.001973$ 28; $\alpha(O)=0.000459~6$ $\alpha(P)=8.49\times10^{-5}$ 12; $\alpha(Q)=7.53\times10^{-6}$ 11 1^{+} 101.07 1+ 0.2032 28 %Iy=0.37 11 490.5 1 4.3 8 591.56? [M1] $\alpha(K)=0.1636\ 23;\ \alpha(L)=0.0301\ 4;$ $\alpha(M)=0.00719 \ 10; \ \alpha(N)=0.001905 \ 27;$ $\alpha(O)=0.000443~6$ $\alpha(P)=8.20\times10^{-5}$ 11; $\alpha(Q)=7.27\times10^{-6}$ 10 509.4 2 6.5 6 581.16 1^{+} 72.01 1-[E1] 0.01175 16 %Iy=0.55 15 $\alpha(K)=0.00957 \ 13; \ \alpha(L)=0.001661 \ 23;$ α(M)=0.000394 6; α(N)=0.0001039 15 α (O)=2.388×10⁻⁵ 33; α (P)=4.31×10⁻⁶ 6; $\alpha(O) = 3.42 \times 10^{-7} 5$ 536.9 2 1.2 2 536.73 1^{+} 0.0 (1^{+}) [M1] 0.1596 22 $\% I_{\gamma} = 0.102 \ 30$

$^{230}{\rm Ra}\,\beta^-$ decay 1980Gi04 (continued)

$\gamma(^{230}Ac)$ (continued)

 $E_{\gamma}^{\dagger} = E_i$ (level)

Comments

 α (K)=0.1285 *18*; α (L)=0.02356 *33*; α (M)=0.00563 *8*; α (N)=0.001492 *21*; α (O)=0.000347 *5* α (P)=6.42×10⁻⁵ *9*; α (Q)=5.70×10⁻⁶ *8*

[†] From 1980Gi04.

[±] Photon intensity relative to $I\gamma(454.9\gamma \text{ from }^{230}\text{Ac decay})=100.$

[#] Based on theoretical spin/parity assignments to levels.

[@] Transition was not observed. $E\gamma$ from level energy.

& Additional information 1.

^a For absolute intensity per 100 decays, multiply by 0.085 21.

 $x \gamma$ ray not placed in level scheme.

230 Ra β^- decay 1980Gi04

