Adopted Levels

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	M. S. Basunia [#] , A. Chakraborty ^{##}	NDS 171, 1 (2021)	1-Jun-2020				

 $S(n)=17712 SY; S(p)=1785 SY; Q(\alpha)=-10556 SY 2017Wa10$

 $\Delta S(n) = 711 \text{ (syst)}, \Delta S(p) = 503 \text{ (syst)}, \Delta Q\alpha = 505 \text{ (syst)} (2017 \text{Wa10}). Q(\varepsilon p) = 16810 \text{ 500 syst} (2017 \text{Wa10}); Q(\varepsilon 2p) = 1.13 \times 10^4 \text{ -} \text{deduced by evaluators using mass data in 2017 Wa10}.$

S(2p)=1790 500 syst (2017Wa10).

Particle stability established in nickel + 40 Ca reactions (1986La17).

²³Si Levels

Cross Reference (XREF) Flags

A ${}^{9}\text{Be}({}^{24}\text{Si},{}^{23}\text{Si})$

E(level)	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
0.0	(5/2)+	42.3 ms 4	A	$%ε+%β^+=100; %εp≈88; %ε2p=3.6.4$ %εp,%ε2p: From 1997BI04. %εp from ≈92% (εp+ε2p) – 3.6. Other values: %εp=73.6 and %ε2p=1.5.11 (2018Wa05) – obtained by evaluators from data in Table 1. Peaks 10 and 11 were identified by 2018Wa05 as β2p branch. Note that the sum 75 6, from listed %εp and %ε2p in Table 1 (2018Wa05) is in good agreement with the sum 75.3, in Fig. 5 and Table 1 (1997BI04). However, 1997BI04 recommend ~92% (εp+ε2p) considering peaks in Fig. 1 and peaks not listed in their Table 1. 1997BI04 mention their recommended value of ~92% is in agreement with the predicted value of 94% (Ref. 27 (private communication)). 2018Wa05 did not comment on total %(εp+ε2p) branch. The evaluators recommend the value of 1997BI04. J ^π : L=2 in (²⁴ Si, ²³ Si). 5/2 ⁺ from shell model (1990Br26). T _{1/2} : From 1997Cz02,1997BI04. Other value: 40.17 ms <i>186</i> (2018Wa05). 1997BI04 also present measured values from decay-time characteristics for different event groups as 46.8 ms 20, 40.9 ms <i>10</i> , and 37.4 ms <i>99</i> . The adopted half-life of 42.3 ms 4 by 1997BI04 was measured considering all events. Note that the value 40.7 ms 4 (1997BI04) in the abstract and on page 250 is a misprint, confirmed by first author B. Blank (private communication with B. Singh, dated Nov. 29, 2018).