9 Be(26 F,2 22 O) 2011Ho05

History

Literature Cutoff Date Citation M. S. Basunia[#], A. Chakraborty^{##} NDS 171, 1 (2021) 1-Jun-2020

Based on XUNDL: Compiled by M. Birch and B. Singh (McMaster); August 6, 2011.

Be target (thickness 470 mg/cm²); ²⁶F beam, E=85 MeV/nucleon, produced at the Coupled Cyclotron Facility at NSCL. Used Modular Neutron Array (MoNA) to measure E(n), ²²O(n-n) coincidence and identified ²²O recoil fragments by energy loss and time-of-flight (TOF). Deduced a two-neutron cascade from a resonant state in ²⁴O decaying to ²³O and finally to ²²O g.s.

²³O Levels

Comments E(level) E(level): from observed neutron-neutron sequential emission of ²²O fragment -nn coin; 2.8×10^{3} 100 keV first neutron with E(n) \approx 0.6 MeV from a level at \approx 7.5 MeV in ²⁴O, the second with E(n)<0.1 MeV from a 2.8 MeV level in ²³O, the latter considered as 45 keV 2 resonance in ²³O (2011Ho05). L,Γ: assumed value for Breit-Wigner line shape to describe two resonances for simulating the sequential decay of E=600-keV resonance in ²⁴O through this state using Monte Carlo simulations.

Decays by neutron to ²²O g.s.

[†] From Adopted Levels.