12 C(24 F,p 23 O) **2003Th07**

Type Author Citation Literature Cutoff Date

Full Evaluation M. S. Basunia[#], A. Chakraborty^{##} NDS 171, 1 (2021) 1-Jun-2020

Also ¹²C(²⁵F,pn²³O) and ¹²C(²⁶F,p2n²³O).

Other references: 2004Th13, 2003Th10 - both are conf. paper - from the same research group of 2003Th07.

One-proton knockout reaction.

2003Th07: ²⁴F beam, E=46.7 MeV/nucleon, was produced from fragmentation of ⁴⁸Ca, E=110 MeV/nucleon, on a thick Be target. The fragments were separated by A1900 fragment separator at NSCL. Three 500–μm thick Si surface barrier detectors followed by three 5000–μm thick Li-drifted Si diodes. Fragments were identified by energy loss (ΔE) and time-of-flight information. The secondary (reaction) target was 146 mg/cm² thick ¹²C. The outgoing ²³O fragments were tracked by ΔE-E signals. Deduce one-proton knock out cross section, spectroscopic factor.

²³O Levels

E(level) J^{π} C^2S Comments

0.0 $J/2^+$ 6.6 9 J^{π} : From Adopted Levels. C^2S : For $C^{12}C(C^{24}F,p^{23}O)$. Measured cross section=6.6 mb 10 for $C^{12}C(C^{24}F,p^{23}O)$, 6.4 mb 9 for $C^{12}C(C^{25}F,p^{23}O)$, and 8.9 mb 24 for $C^{12}C(C^{25}F,p^{23}O)$.