²³Ne β⁻ decay 1974Al03,1963Ca06,1957Pe12

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. S. Basunia [#] , A. Chakraborty ^{##}	NDS 171,1 (2021)	1-Jun-2020

Parent: ²³Ne: E=0.0; $J^{\pi}=5/2^+$; $T_{1/2}=37.25 \text{ s } 10$; $Q(\beta^-)=4375.80 \ 10$; $\%\beta^-$ decay=100 Other references: 1972Ch41, 1968Mo03, 1965La10, 1940Po01.

1974Al03: ²³Ne was produced via ²²Ne(d,p) reaction, E(d)=3.0 MeV. ~0.4 atm of Ne target in a gas cell was bombarded for 10 sec, gas was expanded through the trap to the cylindrical counting cell, internal dimension of 7.5 cm diameter and 2 cm height. 70 cm³ Ge(Li) detector, NE102 plastic scintillator. Measured E γ , I γ , ²³Ne half-life; Deduced beta feeding to excited states from γ -ray intensity balance, log *ft* values.

- 1963Ca06: ²³Ne was produced via ²³Na(n,p) reaction by bombarding 100 g of sodium aluminum silicate in the core of the Oak Ridge research reactor. Emanating ²³Ne was swept continuously by water vapor to the laboratory; vapor removed and contamination purged ²³Ne gas was allowed to decay in a source volume; some of the ions formed following β decay emerged from the volume as a beam, were analyzed by electrostatic and magnetic analyzer in tandem. Measured recoil energy spectrum from 100 to 500 eV; deduce electron-neutrino angular correlation coefficient; assuming *V*-*A* (Vector-Axial vector) interaction is valid – deduced g.s. and 1st excited state β feeding in ²³Na.
- 1957Pe12: ²³Ne was produced via ²³Na(d,2p) reaction by bombarding NaCl powdered target, $E_d=22$ MeV. Active gases were swept by flow of helium to a source chamber of small volume at 100 ft away from the target. Contaminating activities were removed by activated coconut charcoal trap cooled with LN₂. β particles were detected by a stilbene crystal, γ radiation was detected by two NaI(Tl) crystals. Measured $E\gamma$, $I\gamma$, γ - γ coincidence, $E\beta$ spectrum; deduced β feeding to g.s. and excited states.
- 1972Ch41: Source from ²²Ne(d,p), E=2.5 MeV, beam chopper, 99.5% enriched ²³Ne gas target cell (dimension not mentioned). 200 cycles of irradiation and counting. 25.5 cm³ Ge(Li) detector. Measured E γ , I γ , deduced log *ft*, decay scheme. Some of the reported γ in 1965La10 were not observed.
- 1968Mo03: Source from ²²Ne(n, γ), E=thermal, in a circulating volume. 10 and 30 cm³ Ge(Li), NaI(Tl) detectors. Measured E γ , I γ , $\gamma\gamma$ coincidence. Deduced decay scheme. Some of the reported γ in 1965La10 were not observed.

1965La10: Source from ²²Ne(n, γ), E=thermal, in a large volume cell (dimension not mentioned). NaI(Tl) and anthracene crystal. Measured E γ , I γ , $\gamma\gamma$ -coin, and E β . Proposed level scheme. Nine γ rays were placed from seven excited states. Four of the γ rays and four levels were not confirmed in later studies.

1940Po01: ²³Ne produced in ²²Ne(d,p), E(d)=2.6 MeV. Measured E β and half-life 43 s 3 of ²³Ne and β -endpoint energy=4.1 MeV.

Sum of decay energies of this dataset is 4378 keV 42, as compared to $Q(\beta^{-})=4375.80$ keV 10 (2017Wa10) for ²³Ne β^{-} decay.

²³Na Levels

E(level)	J^{π}	$T_{1/2}$
0.0	$3/2^{+}$	stable
440.3 9	$5/2^{+}$	
2076.9 7	$7/2^{+}$	
2981.8 7	3/2+	

[†] From a least-squares fit to the γ -ray energies.

 β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
(1394.0 7)	2981.8	0.065 4	6.13 <i>3</i>	av Eβ=556.81 <i>32</i>
(2298.9 7)	2076.9	1.10 6	5.82 2	av E β =976.94 34
				E(decay), $I\beta^-$: E β =2.4 × 10 ³ <i>l</i> (1957Pe12). I β =1.00 <i>l</i> 5 (1957Pe12).
(3935.5 9)	440.3	31.9 10	5.38 2	av E β =1764.82 45
		<		E(decay), $I\beta^-$: E β =3950 50 (1957Pe12). $I\beta$ =32 1 (1963Ca06) and 32 3 (1957Pe12).
(4375.80 10)	0.0	67 1	5.27 1	av $E\beta = 1980.02$

Continued on next page (footnotes at end of table)

From ENSDF

²³Ne β⁻ decay 1974Al03,1963Ca06,1957Pe12 (continued)

β^- radiations (continued)

E(decay) E(level)

Comments E(decay): 4383 8 (1963Ca06) and 4390 50 (1957Pe12). Iβ⁻: 67 *I* (1963Ca06) and 67 *3* (1957Pe12).

[†] From γ -ray intensity balance.

[‡] Absolute intensity per 100 decays.

γ ⁽²³Na)

Iy normalization: From Σ I(y+ce) to g.s.=33 1 (100 - 67 1 (1963Ca06)), assuming 1% statistical uncertainty for the 440y.

E _γ ‡	Ι _γ #@	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α^{\dagger}	Comments
440.5 6	100	440.3	5/2+	0.0 3/2+	M1+E2	+0.065 5	5.45×10 ⁻⁵ 8	$\%$ I γ =32.9 10 E $_{\gamma}$: 440 (1974Al03), 440.0 6 (1968Mo03). L: 33.0 (1974Al03)
1636.6 8	3.03 12	2076.9	7/2+	440.3 5/2+	M1+E2	+0.19 1	1.12×10 ⁻⁴	$\% I_{\gamma} = 1.00 5$ $\alpha(K) = 4.20 \times 10^{-6} 6;$ $\alpha(L) = 2.51 \times 10^{-7} 4;$ $\alpha(M) = 5.63 \times 10^{-9} 8$ $\alpha(IPF) = 0.0001071 15$ $E_{\gamma}: 1636 (1974A103).$ $I_{\gamma}: 1.00 4 (1974A103).$
2076.7 8	0.306 <i>18</i>	2076.9	7/2+	0.0 3/2+	E2(+M3)	-0.14 14	3.50×10 ⁻⁴ 15	$\dot{\kappa}$ I γ =0.101 7 α (K)=3.25×10 ⁻⁶ 20; α (L)=1.95×10 ⁻⁷ 12; α (M)=4.4×10 ⁻⁹ 3 α (IPF)=0.000346 15 E $_{\gamma}$: 2076 (1974A103). I $_{\gamma}$: 0.101 6 (1974A103).
2541.3 9	0.082 6	2981.8	3/2+	440.3 5/2+	M1+E2	-0.09 3	4.73×10 ⁻⁴	$\dot{\alpha}$ Iy=0.0269 22 α (K)=2.08×10 ⁻⁶ 3; α (L)=1.243×10 ⁻⁷ 18; α (M)=2.79×10 ⁻⁹ 4 α (IPF)=0.000470 7 E _y : 2542 (1974A103). I _y : 0.027 2 (1974A103).
2981.7 8	0.115 6	2981.8	3/2+	0.0 3/2+	M1		6.51×10 ⁻⁴	%Iγ=0.0378 23 α(K)=1.637×10 ⁻⁶ 23; α(L)=9.81×10 ⁻⁸ 14; α(M)=2.20×10 ⁻⁹ 3 α(IPF)=0.000650 9 E _γ : 2982 (1974A103). I _γ : 0.038 2 (1974A103).

[†] Additional information 1.

[‡] From Adopted Gammas. γ -ray energy reported in 1974Al03 is listed in comments section.

[#] 1974Al03 present I γ relative to I γ (440)=33 (listed in comments). Evaluators present I γ relative to I γ (440)=100. The uncertainties of I γ (1974Al03) are statistical only. A larger systematic uncertainty can be expected for the cylindrical gas cell (diameter 7.5 cm and height 2 cm) counting geometry. However, the recommend uncertainty of the absolute γ -ray emission

Continued on next page (footnotes at end of table)

23 Ne β^- decay 1974A103,1963Ca06,1957Pe12 (continued)

 γ ⁽²³Na) (continued)

probability is expected to be valid due to the unique feature of the decay scheme as $I\gamma(1+\alpha)(440)$ represents 99.6% of $\Sigma I\gamma(1+\alpha)$ to the g.s. from excited states and the β branching to the g.s. and 1st excited state dominate the total I β , (67+32)=99%, that yields the same uncertainties as %I β =67 3, 32 3 (1957Pe12), 67 1, 32 1 (1963Ca06), for the g.s. and 1st excited states, respectively. As a result, the uncertainty of the $I\gamma(440)$ can be considered equivalent to $\Delta I\beta(1st excited state at 440)$.

[@] For absolute intensity per 100 decays, multiply by 0.329 10.

²³Ne β^- decay 1974Al03,1963Ca06,1957Pe12

Decay Scheme

 $^{23}_{11}Na_{12}$

4