24 Al β^+ p decay 1994Ba54

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. S. Basunia [#] , A. Chakraborty ^{##}	NDS 171,1 (2021)	1-Jun-2020

Parent: ²⁴Al: E=0.0; J^{π}=4⁺; T_{1/2}=2.053 s 4; Q(β ⁺p)=2192.02 23; % β ⁺p decay=0.0012 3

 24 Al- $\beta\beta^+$ p decay: Measured by 1994Ba54. 1994Ba54: 24 Al was produced from 24 Mg(p,n) reaction using pulsed proton beam, E=28.5 and 20 MeV; 99.8% enriched 24 Mg target (thickness 1.9 mg/cm²); Recoil products were collected using a helium-jet system to the counting chamber and deposited onto a tape in the center of a low-energy proton detector ball; the detector consists of six individual gas- ΔE , gas- ΔE , Si-E triple telescopes; measured Ep spectrum; deduced β delayed proton branch of ²⁴Al.

²³Na Levels

E(level)	J^{π}	
0.0	3/2+	

Delayed Protons (²³Na)

E(p)	E(²³ Na)	Comments
$7.0 \times 10^2 \ 40$	0.0	E(p): From a range of 300 - 1100 keV in spectrum.