²H(²⁴O,p) 2017Jo06

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. S. Basunia [#] , A. Chakraborty ^{##}	NDS 171, 1 (2021)	1-Jun-2020

Target: Liquid deuterium (LD₂); Projectile: ²⁴O beam, E = 83.4 MeV/nucleon, was produced from fragmentation of primary beam of ⁴⁸Ca, E=140 MeV/nucleon, bombarding a ⁹Be target at NSCL facility. A1900 fragment separator was used to select ²⁴O from reaction products. Remaining contaminants were removed by time-of-flight (TOF) in the off-line analysis. Finally, the ²⁴O beam was directed to bombard the liquid D₂ target. ²³N promptly decayed to ²²N. The resulting charged fragments were swept 43.3° by a 4-Tm superconducting sweeper magnet into a collection of position- and energy-sensitive charged particle detectors. Elemental identification was done by Δ E and TOF; Isotope identification was done through correlations in the TOF, dispersion position, dispersive angle following the sweeper magnet. Neutrons were detected by Modular Neutron Array (MoNA) and the Large-area multi-Institutional Scintillation Array (LISA), each consisted of 144 bars of plastic scintillator. Measured decay energy of the ²²N+n system, deduced excited energies above the Sn(²³N). Shell model calculations.

²³N Levels

E(level) [†]	J π ‡	Comments
0.0	$1/2^{-}$	
≈3600	3/2-	E(level): Decay Energy=1070 keV 100. Sn(²³ N)=2460 keV 380 (2012Ga45) gives an excitation energy of 3530 keV 400 (100 (stat)+400 (sys)) (Sn+Decay energy). In 2016-AME Sn(²³ N)=3120 keV 470 (2017Wa10).
≈5000	3/2-	E(level): Decay Energy=2500 keV +500-700. $Sn(^{23}N)=2460$ keV 380 (2012Ga45) gives an excitation energy of 4960 keV +630-800 (Sn+Decay energy). In 2016-AME $Sn(^{23}N)=3120$ keV 470 (2017Wa10).

[†] Level energies were interpreted in 2017Jo06 within the context of shell-model predictions, as it was not possible to discern between any number of degeneracies or level orderings. 2017Jo06 deduce $Sn(^{23}N)=2460$ keV 380 using data in 2012Ga45. In 2017Wa10, $Sn(^{23}N)=3120$ keV 470.

[‡] From shell model calculations.