⁹Be(²²Mg,²³Mgγ) 2011Ga18

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	M. S. Basunia [#] , A. Chakraborty ^{##}	NDS 171, 1 (2021)	1-Jun-2020				

Based on XUNDL: Compiled by J. Choquette and B. Singh (McMaster), Aug 13, 2011.

The ²²Mg beam obtained by fragmentation of ²⁴Mg beam, E=170 MeV/nucleon, bombarding a ⁹Be target (thickness 1.904 g/cm²). The A1900 fragment separator at NSCL used to separate ²²Mg ions. Secondary ²²Mg beam, E=84 MeV/nucleon, bombarded a secondary ⁹Be (thickness 188 mg/cm²) and C target (thickness 149.4 mg/cm²) – placed at the reaction target position of S800 magnetic spectrograph. The target position was surrounded by SeGA array of 32-fold segmented HPGe detectors. Measured Eγ, Iγ, particle spectra (²³Mg)γ-coin, cross sections, longitudinal momentum distributions. Particle identification from energy loss and time-of-flight events. Coupled-channel Born approximation (CCBA) reaction analysis.

One-neutron pickup (from ${}^{12}C$) reaction.

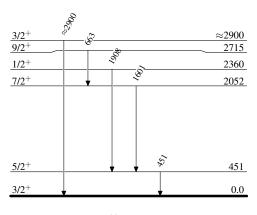
Measured partial cross sections are listed in comments.

Inclusive measured cross section=2.40 mb 19 and 2.58 mb 16 for ⁹Be and C targets, respectively.

²³Mg Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0	3/2+	$\sigma_{\rm f} \le 0.86 \text{ mb} + 8 - 11 \text{ and } < 0.77 \text{ mb} + 9 - 13 \text{ for } {}^{9}\text{Be} \text{ and C targets, respectively.}$ Configuration=0 ⁺ $\otimes 1d_{3/2}$ or 2 ⁺ $\otimes 1d_{5/2}$.
451	5/2+	$\sigma_{\rm f}$ =1.32 mb 12 and 1.27 mb 14 for ⁹ Be and C targets, respectively. Configuration=0 ⁺ \otimes 1d _{5/2} .
2052	7/2+	$\sigma_{\rm f}$ =0.15 mb 4 and 0.18 mb 5 for ⁹ Be and C targets, respectively. Configuration=2 ⁺ \otimes 1d _{5/2} .
2360	1/2+	$\sigma_{\rm f}$ =0.13 mb 4 and 0.08 mb 5 for ⁹ Be and C targets, respectively. Configuration=0 ⁺ \otimes 2s _{1/2} .
2715	9/2+	$\sigma_{\rm f}$ =0.13 mb 4 and 0.10 mb 5 for ⁹ Be and C targets, respectively. Configuration=2 ⁺ \otimes 1d _{5/2} .
≈2900	$3/2^{+}$	Configuration= $0^+ \otimes 1d_{3/2}$.

[†] From γ -ray energies.


[‡] From 2011Ga18 based on comparison of measured neutron pickup cross section and CCBA calculations.

$\gamma(^{23}Mg)$

Eγ	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}
451	451	$5/2^{+}$	0.0	3/2+
663	2715	9/2+	2052	$7/2^{+}$
1601	2052	$7/2^{+}$	451	$5/2^{+}$
1908	2360	$1/2^{+}$	451	$5/2^{+}$
≈2900	≈2900	$3/2^{+}$	0.0	$3/2^{+}$

⁹Be(²²Mg,²³Mgγ) 2011Ga18

Level Scheme

 $^{23}_{12}Mg_{11}$