$^{23}_{12}Mg_{11} \\$

²³Na(³He,t) 2002Fu17

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	M. S. Basunia [#] , A. Chakraborty ^{##}	NDS 171, 1 (2021)	1-Jun-2020	

$J^{\pi}(^{23}Na)=3/2^{+}.$

Target: Thin foil of Na₂CO₃ using polyvinyl alcohol as supporting material (thickness about 2 mg/cm²); Projectile: ³He, E=140 MeV/nucleon, from the K=400, RCNP Ring Cyclotron; Outgoing tritons were momentum analyzed and detected at the focal plane of the Grand Raiden spectrometer with a multiwire drift-chamber system allowing track reconstruction; FWHM=45 keV; Measured triton spectra mainly at 0°, and also $\Theta(\sqrt{(\theta^2 + \phi^2)})$ within 0° to 2.0° in steps of 0.05° for triton intensity; Deduce excitation energy, L value, B(GT) strength. Also studied isobaric analogue structure of ²³Na, mirror nuclide of ²³Mg.

²³Mg Levels

E(level)	L#	Comments
0.0	0	B(GT)=(0.340 14) (including Fermi-transition strength).
451	0	B(GT)=0.146 6 (used for calibration).
2360 <i>3</i>	0	B(GT)=0.055 4.
2906 <i>3</i>	0	B(GT)=0.193 11.
3860 <i>3</i>	0	B(GT)=0.055 4.
4357 <i>3</i>	0	B(GT)=0.250 13.
5291 <i>3</i>	0	B(GT)=0.066 5.
5658 4	0	B(GT)=0.270 17.
5712 [†] 8	0	B(GT)=0.061 9.
6138 <i>3</i>		L: Populated with small L transfer, 2002Fu17 noted.
6550 <i>3</i>	0	B(GT)=0.116 7.
6818 <i>3</i>	0	B(GT)=0.028 3.
6911 <i>3</i>	0	B(GT)=0.057 4.
7114		L: $\neq 0$ (from Fig. 5 caption).
7241 [‡]		E(level): May be a doublet of 7228.5 and 7261.9 in Adopted Levels. Not adopted.
		L: $\neq 0$ (from Fig. 5 caption).
7449 [‡]		L: $\neq 0$ (from Fig. 5 caption).
7790 6		L: $\neq 0$ (from Fig. 5 caption).
7851 6		L: $\neq 0$ (from Fig. 5 caption).
8076 15		L: $\neq 0$ (from Fig. 5 caption).
8168 4	0	B(GT)=0.290 15.
8452 5	0	B(GT)=0.039 <i>3</i> .
9159 6	0	B(GT)=0.069 5.
9502 6	0	B(GT)=0.055 4.
10290 7	0	B(GT)=0.046 4.
11132 8	0	B(GT)=0.062 5.

[†] Close doublet state – the peak shape was well reproduced at 5691 keV.

[‡] From Fig. 5 in 2002Fu17.

[#] Determined from relative peak intensities of the triton spectra at angle intervals of $0^{\circ}-0.5^{\circ}$, $0.5^{\circ}-1.0^{\circ}$, $1.0^{\circ}-1.5^{\circ}$, and $1.5^{\circ}-2.0^{\circ}$.