¹H(²²Na,p):res 2013Ji13

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	M. S. Basunia [#] , A. Chakraborty ^{##}	NDS 171, 1 (2021)	1-Jun-2020		

Based on XUNDL:

Compiled by C.D. Nesaraja (ORNL), August 12, 2014.

Resonant scattering of ²²Na(p,p) measured using thick target inverse-kinematic method. $E(^{22}Na)=37.1$ MeV *10* beam produced in charge exchange reaction ¹He(²²Ne,²²Na)n at E=6.0 MeV/nucleon using CRIB separator at RIBF-RIKEN facility of University of Tokyo. Scattered protons were detected using ΔE -E Si detectors. Measured proton energy spectrum. Deduced J^{π} and proton partial widths for resonance states. R-matrix analysis was applied to the experimental excitation function to deduce the ²³Mg resonance parameters with the assumption of only elastic scattering in the analysis. Proton spectroscopic factor for *l*=0 resonance calculated using the shell model code NUSHELL.

²³Mg Levels

E(level) [†]	$J^{\pi \ddagger}$	S#	Comments
8611 20	(5/2,7/2,9/2)-		Γ_{p} =3.2 keV 10 E(level): From Ep(c.m.)=1030 keV 20.
8793 <i>13</i>	7/2+	0.023 4	$\Gamma_p=1.2 \text{ keV } 3$ S: From $\Gamma_{sp}=67 \text{ keV}$. E(level): From Ep(c.m.)=1212 keV 13.
8916 <i>15</i>	5/2+	0.014 5	$\Gamma_p=2.3 \text{ keV } 7$ S: From $\Gamma_{sp}=182 \text{ keV.}$ E(level): From Ep(c.m.)=1335 keV 15.

[†] From 2013Ji13 based on Ep(c.m) + Sp(²³Mg). Ep(c.m.) values are listed in comments section. In AME2016 (2017Wa10) S(p)=7580.97 23. 2013Ji13 note the uncertainty of Δ Ep(c.m.) within 20 to to 15 keV in increasing order for Ep(c.m.). Evaluators

assign as of the reported uncertainty in resonance levels.

[‡] Proposed by 2013Ji13, based on R-matrix analysis of measured excitation function.

[#] Experimental spectroscopic factor based on theoretical single-particle widths.